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The overarching question that we want to work towards is: What are the principles of autonomous,

embodied intelligence that enable animals to transform continuous sensory inputs into

meaningful physical actions, that can be abstracted into machines? We operationalize this

goal by reverse-engineering the algorithmic principles of animal cognition, and use what we find to

empower more autonomous and adaptive robots. The following 9 pages form the introduction and

motivation (constituting §0) to a longer lab plan that includes a detailed project list for lab members.

I’m including the table of contents of the full document to give a sense of the topics we are interested

in1. If this type of work interests you, email me to learn more about project specifics, or to collaborate!
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0 Background

Why study this question? Evolution, spanning the phylogenetic tree from nematodes to fish, rodents,

and primates, has consistently achieved what we have not yet been able to build – namely, embodied

agents capable of flexibly and robustly interacting with the physical world to ensure their survival. This

sensorimotor loop is the foundation of intelligence that’s shared across species, and upon which our

more abstract reasoning capabilities (including language) rest. However, engineering this capability has

been a major computational challenge in artificial intelligence (AI), especially considering that it has

been a long-held (yet unachieved) goal to build general-purpose robots. Despite algorithmic and dataset

scale advances that enable effective representation learning [18], current AI struggle to understand the

1For either a short or long form (includes past work) video overview, see here or here, respectively.

https://anayebi.github.io/contact/
https://www.youtube.com/watch?v=WJPQZssPrA8
https://www.youtube.com/watch?v=fE5wRn9Rwgo
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world in physically-grounded, common-sense terms [34, 70]. Nor is existing AI as autonomous, or as

able to learn2, adapt3, and act4 in novel situations as animals do.

Central to this capability in animals is the structured interaction of neural circuits in their brain

to bring forth complex behaviors (forming a “cognitive architecture”). Traditionally, neuroscientists

have often focused their studies on individual brain areas, leading to a rich and detailed understanding

of these specific regions. However, this focus has left understudied how these various brain areas

collaborate to enable animals to build a model of the world and use it to execute actions within their

environment. (Not to mention we do not truly understand any individual brain area without also

understanding how it works with other brain areas5.) This question has been particularly challenging

to address in the past, as neural recording technologies were limited to capturing only small portions

of a neural population in a single session. The development of large-scale recording techniques [149,

80], which now allow for simultaneous recordings across multiple brain areas in behaving animals,

offer an unprecedented opportunity to reverse-engineer this phenomenon. Coupled with the advent of

task-optimized artificial neural network models that yield accurate accounts of individual brain areas6,

we now have the potential to start to understand how these areas collectively work together.

To understand this interaction, we aim to gain a more comprehensive understanding of what con-

stitutes intelligence by reverse-engineering it across multiple species. In other words, the best way to

understand the brain is to try to build one. Specifically, we will reverse-engineer the foundational sen-

sorimotor loop conserved across species through building integrative, embodied computational models,

or “agents”. Historically, there have been many agent proposals (e.g. ranging from the early days of

cybernetics [170] and symbolic AI/robotics [105, 106, 123, 21], to recent ones in the language of modern

deep learning [84, 153]). But none of them are specific enough to be built, let alone be predictive of

neural activity (they’re “not even wrong!”7). In other words, they aren’t testable scientific theories of

intelligence, so much as they are frameworks based on a useful collation of high-level takeaways from

cognitive science, AI, and neuroscience. The hard part, and what forms the core of our research focus,

is figuring out the specifics of the agent architecture as we build them. Therefore, our aim of building

an embodied agent (cf. Figure 1), one for each species under study, forms the superstructure from

which we generate scientific questions of interest. To get at this, I consider five main components of the

agent that we will make concrete by specifying suitable tasks and architectures for, and which many

species share:

2Especially learning a model of the world in an online, sample- and energy-efficient way, and updating it without

catastrophically forgetting everything before it (cf. §1.2).
3I mean here flexibly combining representational primitives to reason and plan multimodally in novel situations well

outside of the original training distribution. Formally, statistical learning theory [163] is only concerned with generalization

to new samples from the same distribution. However, a core aspect of intelligence is autonomous, open-ended generation

of one’s abstractions to enable adaptation beyond previously experienced training data.
4Both autonomously combining motor primitives to learn new compositional skills is currently challenging in robotics,

as well as the general principles of sample-efficient, high-dimensional motor control (cf. §1.4).
5For example, are explicitly object-centric vision architectures needed (§1.2.1), or are the current architectures mostly

sufficient if they had high-dimensional tactile feedback (§1.1.2)? This is all to illustrate that in order to know what’s

needed for one brain area, it’s helpful to have a handle on how other brain areas interact with it. Otherwise, when

working in isolation, we may be trying to solve much harder problems in one component, that are more easily solved once

you integrate these components together.
6e.g. visual [173, 73, 25, 115, 180, 119, 118], auditory [72, 44], motor [151, 103], memory [117], and language [141]

brain areas.
7This quote is famously attributed to the physicist Wolfgang Pauli [130].



Aran Nayebi NeuroAgents Lab Plan 3/38

 Motor Module (§1.4)

Low-level Controller

Positive Samples

Negative 
Samples

Perceptual Module (§1.1)
Self-Supervision Future Inference Module (§1.2)

Latent State

Object-centric
Dynamics Predictor

Planning Module (§1.3)

Value

Key

Cognitive Map

Sensory 
(Input) Stream

Action 
(Output) StreamEnvironment

Multi-area 
Neural Recordings

Map to Neural Activity (§2.1)

Corr( ),
V1

IT

V4

DMFC

HPC

EC

M1

Macaques
Cerebellum

V1
PM

AM

LM
AL

RL

HPC

mPFCM
1

Rodents

Ce
re

be
llu

m

V1 V4

Parietal Lobe

FrontalLobe

IT
HPC

Humans

M
1

Cerebellum

High-level Controller

Intrinsic Goals (§1.5)

Figure 1: Integrative, embodied agents to reverse-engineer natural intelligence. A schematic of an

example integrative, embodied agent consisting of a recurrent, self-supervised perceptual system (§1.1) that

outputs an object-centric latent upon which a future inference module (§1.2) operates to predict the next

state of the environment. The planning module (§1.3) hierarchically organizes these representations to plan

future actions, which are then passed to effectors that output intrinsically-guided (§1.5) motor commands

to perform actions in a biomechanically-realistic animal body (§1.4). Solid black arrows represent possible

connections between modules. Each representation in these modules is obtained through task-optimization

and then mapped (up to the suitable transform, cf. §2.1) to neural activity across multiple brain areas (dotted

green arrow). In this example, we show rhesus macaque, rodent, and human brains, with proposed matched

representative areas color-coded to each module across species. While I expect the specifics of the modules

in each integrative agent to differ for each species it is compared to, the long-term, overarching goal of this

approach is that by comparing integrative agents to multi-area neural and behavioral data from multiple

species, we are positioned to identify common algorithms of natural intelligence conserved across species.

(1)

1. They can represent/perceive their physical environment, (§1.1)

2. Which they act in, either reactively or, (§1.4)

3. By prediction of upcoming future states of the environment, (§1.2)

4. Using those predictions to plan possible actions to take, (§1.3)

5. According to temporally-varying intrinsic goals that are either hard-wired or adaptive based

on the current environmental context (§1.5).

The projects listed in §1 are organized around these five components. I am, of course, open to consid-

ering more components, but I’m focusing on these five to give us a concrete starting point to generate

testable hypotheses. §§2-3 primarily are concerned with applications once we have reasonably developed

the embodied agents proposed in §1.

0.1 Methodology

Overall, we are leveraging the nexus of two advances: (1) advancements in AI to generate functional

hypotheses about the brain, and (2) an increasing proliferation of large-scale neural population recordings

from various organisms, to strongly constrain our functional hypotheses. This motivates the following

methodology we will take when building agents and comparing them to neural and behavioral data, is
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applicable across all the lab’s projects:

1. We will assume, as a first-order approximation, that the brains of many animals

can be partitioned into functional modules. End-to-end reinforcement learning (RL) has

been the latest framework in which agents have been presented. But this framework represents

a quite simplistic picture of a brain as a monolithic policy π that gets external rewards from the

environment. These rewards are either sparse, or unclear how an actual animal would get these,

typically inefficient at controlling even simple multi-jointed bodies [56], which would be deadly

for an organism in reality. Now, it could certainly be the case that with enough data, a suitably-

chosen survival-based reinforcement objective could recapitulate the brain. But given the data

inefficiency and hyperparameter sensitivity of end-to-end RL techniques, we lack a large enough

multimodal dataset to fully enable this. It also may never be feasible, as RL is underpowered,

being conceptually akin to simple associative trial-and-error learning (though §2.3 explores some

improvements in the context of evolutionary searches).

But practically speaking, current training datasets have many useful priors, so why not leverage

self-supervised pretraining to make learning easier rather than starting from scratch each time?

Not to mention, for a fixed training dataset, compared to self-supervised learned representations,

current RL objectives do not give us neurally-aligned visual systems in both rodents [119] and

primates [120]. Therefore, except for §1.4 and §1.5 where supervised/RL pretraining may be more

suitable for action-related modules, we will likely use self-supervised pretraining for each module8.

We can think of this pretraining stage as an efficient proxy for learning representations that were

settled on over the course of much longer evolutionary timescales for animals. While AI has

reasonable techniques for self-supervised representation learning, using this to pretrain modules

is likely not enough on its own to replicate animal embodied intelligence. In fact, we can think of

the agent architecture, which specifies how these modules interact, as corresponding to learning

over the organism’s lifetime (cf. §2.2) – enabling it to generalize to novel, out-of-distribution

scenarios at “test time” that it can encounter daily, to ensure its survival. Constructing these

general-purpose agent architectures is a major open question in AI, and something that the brain

sciences can help guide.

2. We specify the details of these components in the language of task-optimized mod-

eling, from which we generate an understanding of the functional constraints of the

target brain area by evaluating models against neural/behavioral data as ground

truth. The conceptual insight we get from task-optimized modeling is a structural and func-

tional understanding of the selective pressures on the brain area under study, over evolution and

development to reach the adult state9. Thus, the responses of hundreds of neurons (from hundreds

to thousands of stimuli conditions) are effectively distilled into an architecture and optimized loss

function that faithfully generates it. Therefore, if a lot of models match the data that’s bad,

because it means the data (and metric) isn’t differentiating. But if a small number of them do,

then you can learn something, and get a strong conceptual conclusion out of that. Now, we

aren’t claiming that evolution is always maximizing, or that the brain is always optimal, or that

natural selection explains everything in biology by itself. Rather, insofar as some features of neural

8For practical purposes, in the event that coming up with self-supervised loss functions for a given module becomes

a great impediment (e.g. as it used to be for object categorization, and currently is the case for optic flow), it’s fine

to use a supervised/language-conditioned proxy for the time being, with the eventual goal of likely replacing it with

self-supervised loss function(s) later down the line.
9There have been recent efforts on “foundation models for neuroscience” [177], achieved by training deep neural

networks directly on multi-region neural data (rather than optimizing for a task). While we can now collect sufficient

neural data without much overfitting when training on it, we avoid this direct neural data training to preserve the

understanding of selective pressures that we get through task-optimization, which would otherwise be lost despite yielding

a predictive model of neural responses.
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response patterns arise through selective pressures under a task constraint, then a task-optimized

model of that system will be helpful in explaining those very features (cf. [27] for a more extensive

discussion). The past decade of task-optimized modeling has shown that this situation is quite

common across species and brain areas. In fact, a core objective of neuroscience has been to

uncover the underlying reasons why the structures of the brain are as they are, and why they

respond as they do, namely to assign function to structure, which is what we are doing here.

Now, in practice, modern AI changes at a fast pace. The architecture of this year may not be

the architecture that’s popular in a couple months. Our goal isn’t to ship a product or to always

beat the most popular machine learning benchmark, but to pursue a persistent, long-term goal

of providing a systems-level understanding of an organism’s brain. Why? Because the brain is

the only example of intelligence we know of and agree on, and over the past century, we’ve yet to

settle on the algorithmic principles that replicate many of the intelligent behaviors it exhibits. As

a result, we’re not creatively limited to what’s efficient for the current hardware of our time (e.g.

Transformers [164]), but rather we’re in the business of figuring out what tasks and architectures

best recapitulate observed neural activity, pulling insights not just from AI, but from neuroscience

(mainly for macroscale architecture insights) and cognitive science (mainly for task insights) as

well. For example, it’s likely inevitable that we will use RNNs in some form since, despite them not

being super efficient for GPUs, neurons have functionally-relevant dynamics that our models have

to engage with in order to understand their role [118, 115]. Therefore, we’re not competing with

industry-based AI. Instead, it’s a beneficial collaboration, as an algorithm that works robustly

for engineering purposes could be a reasonable hypothesis for an algorithm in the brain that we

could test10. To do so, at a minimum, we adapt current AI algorithms to the constraints of the

organism under study, rather than only taking pretrained ones off the shelf and comparing them

to data. It’s this type of “convergent evolution” between science and engineering that, when it

happens, can be quite striking and deep.

Now, currently in industry, due to 2-5 year value proposition timelines, it’s more practical to

scale and curate datasets to get performant models, rather than focus on architectures or loss

functions, which might enable more sample-efficient scaling if improved11. Especially consider-

ing the resource limitations of academic labs, we’re certainly more incentivized to spend time

inventing more sample-efficient AI algorithms (which I’d argue is the fun, creative part of AI

anyhow!). The great advantage of academia is the freedom and luxury to work on the next big

thing, rather than the current one, and to have the time to incubate and develop it before it’s

ready for industry adoption. As a result, discovering these inductive biases is what we’re best

positioned to work on, by thinking both cognitively about the organism’s behavioral constraints,

and suitably abstracting neural circuit motifs to enable more sample-efficient learning [101, 175].

Ideally, these inductive biases scale with more data, but they mainly have to be sufficient for

the compute/data resources at hand, available through interaction in most environments (which

is the context the brain operates in).12 From a practical engineering perspective, improving the

existing architectures and loss functions in this way may ultimately end up being necessary, as we

may end up not having enough training data to scale the current Transformer architectures with

10Likewise, if an approach fails to work in industry, despite having vast amounts of people and resources working on

it, then that is super useful to know. In fact, it’s probably the strongest empirical “steelman” one could have against a

given approach, aside from any yet to be proven no-go theorem.
11e.g. just as CNNs work better than MLPs on ImageNet, due to CNNs having more appropriate inductive biases for

vision [38, 76], or LSTMs [63] being better at sequence learning tasks over less constrained SimpleRNNs [43], etc.
12To illustrate this point further, I’ll analogize to existing technology: You could say that abstracting the Bernoulli

principle from bird flight enabled us to build jet planes that can transport large amounts of cargo over very long distances.

But, compared to a bird, a jet plane is far less flexible in terms of the flight paths it can maneuver or the places it can

land on (e.g. planes can’t land on tree branches, or fly between tight obstacles). So clearly there is a resource-tradeoff

curve, where the bird is optimal in one resource regime, and the plane is optimal for another.
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autoregressive loss functions to human (or animal-level) embodied intelligence13. And even if we

do get sufficient interaction data to pretrain statistical representations with existing models, such

that most of the evaluations basically become in-distribution at test time, you could still argue

that a key essence of intelligence is to be able to perform well in out-of-distribution contexts.

This makes it necessary to find suitable agent architectures that specify how these statistically

pretrained components interact, to extrapolate far beyond the pretraining data distribution. After

all, it would be infeasible for evolution to pre-program every new situation an animal will come to

encounter in its daily life into its genome! Instead, it needed strong inductive biases to generalize

not to all scenarios, but specifically to those that matter for survival.

3. For the most part, we leverage high-variation, virtual reality environments for model

training and evaluation. No single robotics simulator is perfect, but as it stands now, current

robot hardware is quite inflexible compared to animal bodies and easy to break (allowing us less

opportunities to fail). While robot hardware is improving, virtual reality (VR) has a much faster

iteration time than the real world, enabling us to have greater control over the environment and to

use more biomechanically-realistic animal bodies. Science progresses when there is good control

over variables of manipulation, and a fast time to failure! Simulation environments also better line

up with evaluating against modern neuroscience experiments which themselves are also using VR

increasingly. We do eventually want to try controlling real robot bodies, after sufficient iteration

in VR. In other words, we test our theories of intelligence with both a “robot test” in collaboration

with roboticists, as well as “neural and behavioral tests” in collaboration with neuroscientists and

cognitive scientists. Our ultimate engineering endpoint is to provide the software/algorithms for

more physically-grounded, common-sense robots, and unlike any single machine learning bench-

mark, the strongest (and most constraining) test of our theories of intelligence will be if they can

empower meaningful interaction with the real world, just as an organism’s brain would.

0.2 Philosophy

This endeavor naturally requires a combined interaction between neuroscience, cognitive science, and

AI, paving the way towards a more unified natural science of intelligence14. But what would such a

science even look like? While we currently view these as distinct disciplines, they are all different sides

of the same coin: (systems) neuroscience is concerned with neural circuit implementations/mechanisms

related to a particular function/behavior, cognitive science with those functions/behaviors, and AI with

building functional systems15. With this perspective in mind, it becomes clear that at a minimum, such

a science must consist of functional and predictive theories of natural intelligence, by which I mean: these

theories have to be predictive, by recapitulating observed neural activity (neuroscience) and behavioral

patterns, while also adequately performing a function/behavior (cognitive science). This will require

significant engineering (AI) efforts, in order to scale to the challenging environments animals naturally

confront. As a consequence, the “principles” of the natural science of intelligence will mainly be

algorithms, processes that are abstracted from biology and runnable across different implementations16.

13This possibility stems from the observation that existing generative AI notoriously struggles to reason or plan as

well as humans and animals, especially in novel scenarios [34, 70]. Augmenting them further with agent modules (as

surveyed here [166]) are unfortunately too application-specific, rather than general-purpose. Brains are also more power-

efficient [59] than current AI architectures in many respects (again, likely because of the inductive biases they possess).
14I want to distinguish this from the “science of natural intelligence”, as the brain and cognitive sciences are pursuing

this already, without necessarily having the goal of contributing to, or relying on, insights from building AI that functions

in the real world.
15Simply put in the language of task-optimized modeling: neuroscience mainly tells us about the architecture (through

anatomical observations), cognitive science about the tasks (consisting of a loss function and data stream), and current

AI gives us effective learning rules (via gradient-based optimization).
16Just as how physical laws are runnable abstractions of physical systems. After all, one could record patterns of

voltages from a computer while it runs a program, just as we do in the brain, but that would be completely missing the

forest for the trees – the algorithm itself is the understanding we wanted! Put another way, the algorithm sets the target
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Thus, this science should be applicable not just to machines and human brains, but to other species’

nervous systems as well. Finally, I would argue that we are mainly in the “empirics gathering” stage

of the natural science of intelligence, wherein we are trying to engineer/discover examples of artificial

systems that can work in the real world, and can also predict biological brain data. Almost every

science begins this way, by collecting many empirical examples of a given phenomenon before being

in a position to identify unifying principles (if any) responsible for the common trends that have been

observed.

The above considerations lead me to our lab’s scientific philosophy:

1. We are chiefly motivated by a behavioral domain of interest. Specifically, for each

species we study, we focus on the hard engineering problem their brain has solved, better than

any AI system we have now. And due to Moravec’s paradox [109], there are many more of

these challenges as we “climb up” the phylogenetic tree, compared to focusing on higher-level

cognition, which is easier to reverse-engineer with current AI and has evolved over a much shorter

period. While “simpler” or “more complex” organisms aren’t objectively defined, in practice,

“simple” refers to those species most accessible in terms of neuron count and temporal fidelity

using current neural recording technologies. Thus, we work “bottom up”17, starting with the

“simplest” species whose brain solves that hard problem, since it makes the reverse-engineering

of that hard problem more tractable compared to a more complex organism (and the insights we

find in the simpler setting may have been conserved or independently rediscovered by evolution,

serving as an initial hypothesis in another organism). As a result, we do not overfit to any one

organism, but through extensive experimental neuroscientist collaborations, we aim to gain an

understanding of the algorithmic principles of natural intelligence across species. After all, this

is the target of explanation for any meaningful natural science of intelligence. In fact, this is a

primary reason why we focus more on model building than metric building (though we do some of

that18) because, for many problems, no current model explains the data well under any reasonable

metric, as they can’t perform the behavior to begin with.

2. We are interested in theories that are both functional in that they do things as an

organism would, and are also predictive of neural and/or behavioral data. After all, we

are doing science, not only engineering, and it is a basic requirement of any branch of science that

its theories explain empirical data. Predictivity has actually been a high bar in the brain sciences.

Many mathematically interpretable hypotheses that were not task-performant, did not end up

being predictive of large-scale neural activity19. Perhaps this lack of mathematical interpretability

is not surprising, considering that a primary observation of modern complex systems research is

that in Nature and in silico [171], many repeatedly iterated processes (e.g. via evolution or

optimization) become much more complex by the end of that iteration20. Furthermore, if the

past half-century of AI has taught us anything, it’s that we know very little about what works

for what to look for in detailed neural response patterns.
17This approach is consistent with Gall’s Law: “All complex systems that work evolved from simpler systems that

worked.” A quote due to Rodney Brooks [14, pg. 50] that illustrates the importance of Gall’s Law is that if you start

by reverse-engineering a plane using a Boeing 747 as your exemplar, you might be too distracted by the other features,

like the plastic seats or windows, to realize that flight is due to the wings: “Suppose it is the 1890s. Artificial flight

is the glamor subject in science, engineering, and venture capital circles. A bunch of [artificial flight] researchers are

miraculously transported by a time machine to the 1990s for a few hours. They spend the whole time in the passenger

cabin of a commercial passenger Boeing 747 on a medium duration flight. Returned to the 1890s they feel invigorated,

knowing that [artificial flight] is possible on a grand scale. They immediately set to work duplicating what they have

seen. They make great progress in designing pitched seats, double pane windows, and know that if only they can figure

out those weird ‘plastics’ they will have the grail within their grasp.”
18Over the years, a method we’ve found useful is to first identify the simplest transform between two animals for a

given brain area, giving rise to the “inter-animal consistency”, and then use that transform for each of the models we

compare. See, e.g. [120, 119, 117] for more details. The project in §2.1 is devoted to developing this further.
19e.g. Gabors and macaque V1 [25], HMAX and macaque V4/IT [173], grid-cell-only models and rodent MEC [117].
20In fact, only a small class of functions, known as idempotent functions, stay identically the same at every step of the
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computationally and why. Many a priori theoretically well-motivated ideas have failed to produce

intelligent behaviors in the complex environments that organisms face. As such, we will always

compare our models against a range of alternative hypotheses without being beholden ahead of

time to any particular one. The insight comes when many of the hypotheses are non-trivially

ruled out by neural data, as none of them were strawmen to begin with. Finally, when possible,

we compare to the randomly initialized architecture (or “randomly moving” control), to facilitate

understanding and isolate how much individual factors such as the task vs. the architecture alone

matters.

3. Relatedly, we do not a priori select for the mathematical interpretability of models

(and metrics), but rather choose the most parsimonious functional solution that is

equally predictive at the suitable biological abstraction. The brain was not specifically

evolved to be mathematically beautiful when examined by humans millions of years later, but

is the result of many complex and interacting pressures to ensure the organism’s survival. In

other words, evolution had to ultimately solve a hard, and constraining, engineering problem.

This is why toy models and tasks, traditionally preferred in computational neuroscience for their

mathematical interpretability, often don’t suffice for us. They can be too reductionist to exhibit

interesting behaviors and too underconstrained, being solvable in many different ways. After all,

in order to understand what computational ingredients are needed to generate intelligence, our

models have to demonstrate these behaviors in the first place! Mathematical interpretability is

also an inherently subjective measure21, whereas predictivity of empirical data is an objective

measure of scientific progress. This does not mean that in practice we expect to always explain

100% of our data. Rather, we always want to progressively rule out prior theories and find what

is most consistent with data with the best engineering solutions we can currently come up with.

In other words, we strive to make our theories precise and predictive, so that we can be (slightly)

less wrong and know by how much they are wrong, rather than being not even wrong.

Task-optimized models, therefore, naturally engage with this complexity by not a priori requiring

that the end state of an evolved/iterated system (like the brain) be mathematically interpretable

in all cases. Rather, they provide a mathematically concise loss function and architecture that,

once optimized, gives rise to the complexity/diversity of neural response profiles we see in a

macroscopically (and functionally) significant brain area. Now, these representations may end up

being “mere” statistical approximations to a much lengthier implementation-level/mechanistic

description of how the parts within a single module/brain area combine into a whole22. The main

iteration (e.g. absolute value, |x|). Of course, this does not preclude that small portions of the end states of an iterative

process can remain mathematically interpretable, e.g. as in Ramsey theory [50] where one can prove that if a graph is

large enough, then some property P holds in its substructure. So perhaps it’s not all that surprising as we see in neural

population data that these tend to form a small subset of the population response profiles (e.g. grid cells in MEC, or

Gabor edge detectors in V1).
21Even if interpretability is subjective, one could still argue that whatever definition of interpretability satisfied someone,

that it is much easier to attain this in a task-optimized in silico system that they have perfect access to, than the much

noisier, limited access biological system (see, e.g. [100, 154, 94], for how this can be achieved in artificial neural networks

(ANNs) relevant to neurobiology). For if they cannot attain the former, it is hard to argue they could ever attain

the latter. And if such a deeper interpretable theory exists, then we can view what we are doing as the necessary

“empirics gathering” stage to strongly separate hypotheses about what such a theory could even look like, through the

study of successfully brain-predictive ANNs. This is especially the case since it is currently faster to build an ANN is

task-performant and predicts a brain area, than to theorize ab initio about it and hope it explains the brain.
22Although, I will point out that humans have historically been quite bad at providing these handcrafted mechanistic

explanations, which one could refer to as the analogous “bitter lesson” [152] of systems neuroscience. In fact, the notion

of “mechanism” in traditional neurobiology is a bit ill-defined in a general sense, because you end up with a different

explanation for what a given brain area is doing for each different input/environment [154], and it is unclear how to

combine these mechanisms by hand into a comprehensive account [114]. Instead, it’s been more promising to go in

the reverse direction, by first building the single network to natural scene responses and then distilling the individual

mechanisms that arise in any specific context (see, e.g. [154, 94]).
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point is that such approximations are sufficiently predictive and can be described succinctly into

the three-tuple of task (consisting of a loss function and data stream), architecture, and learning

rule. The core insight is when only a few patterns of tasks and architectures predict the data

well, and the rest fall by the wayside, constituting an empirically faithful distillation of a complex

system. Thus, in some sense (namely, the Kolmogorov one23), this would be more interpretable

than the much longer mechanistic description we may never find.

4. We are interested in biological features only as necessary for improved function, to

generate a normative understanding of their role in performing a behavior. The brain

is the most complex biological system in existence, and there are many aspects of it that may not

be relevant to intelligence. Therefore, we never add biological realism merely for the sake that the

brain has it, but rather we want to know the minimal set of details needed for the operationalized

behavior under study. After all, science is, in large part, about finding runnable abstractions

(“laws”) of a natural phenomenon that are useful for predicting it in new circumstances. (This

is also why we don’t train on neural data directly, nor is our goal to do full-brain emulation

at the level of molecular biophysics.) In fact, it is a deeper result if we absolutely fail without

adding extra biological features, than if we add them without understanding their fundamental

importance in meaningfully contributing to behavior. A modern example of this point is that

having (real-valued) McCulloch-Pitts neurons [99] ended up being a necessary abstraction of

biological neurons to produce more flexible AI24, since operating only at the level of behavior

(e.g. as operationalized by logic-based symbolic programs in the GOFAI era) ended up having

limited success on its own [92]. For the most part, many questions we will ask mainly engage

with the level abstraction of firing rates (or, slightly less ideally, a related readout of population

activity, such as calcium imaging or voxel responses). This isn’t merely an aesthetic choice: the

last decade of task-optimized modeling has shown empirically, across brain areas and species, that

neurons (at the level of their firing rates) are strongly constrained by behavior (as operationalized

by optimization on a high-variation, ethologically-relevant task). In words, firing rates are likely

a reasonable abstraction for studying natural intelligence in many species and brain areas25.

23https://en.wikipedia.org/wiki/Kolmogorov_complexity
24We could further ask if we need to incorporate additional biological features beyond rate-based ANNs to replicate

natural intelligence, such as dendrites, neurotransmitters, etc. While detailed biophysical modeling is likely necessary for

building improved brain-machine interfaces (cf. §3.2), I’m not convinced this is absolutely necessary for intelligence itself

(but certainly open to the possibility!). This is due to the “separation of scales”, whereby complex phenomena in Nature

often emerge collectively over aggregates of finer details. (For example, we never need to resort to quantum mechanics

when reasoning about the physics of everyday objects.) So perhaps firing rates aggregated over large neural populations

are a sufficient level of description for most of the intelligent behaviors we care to study. This is underscored by the

observation that groups of artificial units are often needed to faithfully map to one biological neuron, whereas one-to-one

transforms routinely fail to do this well (see, e.g. [119, 117]). Therefore, if there is functional relevance to these other

biological features, we may be able to “make up for them” by having many more deeper [13] or more stateful, rate-based

recurrent architectures, e.g. LSTMs [63], GRUs [31], differentiable key-value memories [53, 150, 8], and most recently,

SSMs [55]. In fact, some of my earliest work showed that a suitably-optimized LSTM architecture is a reasonably good

end-to-end differentiable implementation of the readily releasable pool of vesicles [100, §3.6], which is the underlying

mechanism for contrast adaptation in the retina [126].
25If, on the other hand, we were dealing with questions of timing or energy efficiency, especially at the sensory periphery,

it may be necessary to compare to individual spikes. However, questions of energy efficiency are often best addressed

not by adapting the underlying algorithm, but rather the hardware to improve the demands of the software that it runs.

Furthermore, it’s been a challenge to build spiking models that can perform interesting behaviors, especially compared

to rate-based networks. While this situation may change, most of our questions deal with basic function, so firing rates

will nonetheless be a sufficient abstraction for the projects considered here. It’s an interesting question whether one can

come up with an automated “compilation procedure” for going from firing rates to spikes, just as we compile higher-level

programming languages to hardware-specific byte code and do all of our reasoning/software development in the general-

purpose, high-level language. Perhaps a “population factor” approach [39] might be a good starting point for designing

such an automated procedure that translates performant firing rate models into similarly-performant spiking models,

which are in turn energy-efficient on specific neuromorphic hardware (effectively becoming a “mortal computation” [61]).

https://en.wikipedia.org/wiki/Kolmogorov_complexity


Aran Nayebi NeuroAgents Lab Plan 10/38

1 Agent Development Projects

In what follows, I now describe projects that cut across species, aiming to address systems-level questions

about organisms that are also important for the design of embodied agents. The subsections are

organized according to the five basic components of an agent (1), where each project is motivated by

identifying suitable architectures/tasks that specify these components, so that they can be naturally

combined together to explain neural activity in a variety of species, enabling cross-species comparisons

as well. Where relevant, I will highlight the connections between the components, and the species whose

brain data we quantitatively compare to for each project in blue.

The next 14 pages detail specific lab projects (omitted). If this type of work interests

you, email me to learn more specifics about them, or to collaborate!

https://anayebi.github.io/contact/
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[8] Andrea Banino, Adria Puigdomenech Badia, Raphael Köster, Martin J Chadwick, Vinicius Zambaldi, Demis Has-

sabis, Caswell Barry, Matthew Botvinick, Dharshan Kumaran, and Charles Blundell. Memo: A deep network for

flexible combination of episodic memories. arXiv preprint arXiv:2001.10913, 2020.

[9] Andrea Banino, Jan Balaguer, and Charles Blundell. Pondernet: Learning to ponder. arXiv preprint

arXiv:2107.05407, 2021.

[10] Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image synthesis. Science,

364(6439):eaav9436, 2019.

[11] Daniel Bear, Elias Wang, Damian Mrowca, Felix Jedidja Binder, Hsiao-Yu Tung, RT Pramod, Cameron Holdaway,

Sirui Tao, Kevin A Smith, Fan-Yun Sun, et al. Physion: Evaluating physical prediction from vision in humans and

machines. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track

(Round 1), 2021.

[12] Daniel M Bear, Kevin Feigelis, Honglin Chen, Wanhee Lee, Rahul Venkatesh, Klemen Kotar, Alex Durango, and

Daniel LK Yamins. Unifying (machine) vision via counterfactual world modeling. arXiv preprint arXiv:2306.01828,

2023.

[13] David Beniaguev, Idan Segev, and Michael London. Single cortical neurons as deep artificial neural networks.

Neuron, 109(17):2727–2739, 2021.

[14] Max Bennett. A Brief History of Intelligence: Evolution, AI, and the Five Breakthroughs That Made Our Brains.

Mariner Books, 2023. ISBN 9780063286344.
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[31] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural ma-

chine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics

and Structure in Statistical Translation, pages 103–111, Doha, Qatar, October 2014. Association for Computational

Linguistics. doi: 10.3115/v1/W14-4012. URL https://www.aclweb.org/anthology/W14-4012.

[32] Jeff Clune. Ai-gas: Ai-generating algorithms, an alternate paradigm for producing general artificial intelligence.

arXiv preprint arXiv:1905.10985, 2019.

[33] Philip Coen, Marjorie Xie, Jan Clemens, and Mala Murthy. Sensorimotor transformations underlying variability

in song intensity during drosophila courtship. Neuron, 89(3):629–644, 2016.

[34] Colin Conwell and Tomer Ullman. Testing relational understanding in text-guided image generation. arXiv preprint

arXiv:2208.00005, 2022.

[35] Will Dabney, Zeb Kurth-Nelson, Naoshige Uchida, Clara Kwon Starkweather, Demis Hassabis, Rémi Munos, and
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Ölveczky. Continuous whole-body 3d kinematic recordings across the rodent behavioral repertoire. Neuron, 109

(3):420–437, 2021.
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