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• Consists of biological building blocks 
• concise mathematical description 
• testable by neurophysiology experiments

From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction

Model reduction on artificial network yielded three 
experimentally verified mechanisms and a new testable hypothesis.

1. Latency coding: Dual ON-OFF bipolar pathways model consistent with (i) pharmacological experiments, (ii) existing theory


2. Motion anticipation: Dual pathways are necessary and inhibitory cell type is necessary. 

Qualitatively consistent with a recently proposed theory.

3. Motion reversal: ON/OFF reversal along space explains existence of the burst. Inhibitory pathway explains the fixed 
latency. Qualitatively consistent with a recently proposed theory

4. Omitted Stimulus Response: Derived a new & only theory that agrees with all experimental facts. The model predicts 
existence of two types of ON bipolar cells (one only active in high frequency regime with earlier peak, the other always active 
with later peak) both sending inputs to the same ganglion cell.

1. High-throughput neural recordings

2. Train deep-learning model

3. Identify important sub-circuits
4. Derive an array of interpretable models

4. New!

3. Verified2. Verified

1. Verified

What can deep learning models tell us about the inner-workings of the brain?
We combine “in-silico neurophysiological experiments” and “interpretation tools” to perform model reduction, yielding new experimentally testable mechanisms.

Introduction

Are the artificial network’s computational mechanisms for 
generating neural responses the same as those in the brain?

Deep learning models are successful at reproducing the input-output map of sensory areas (retina, V1, 
V4, IT). However, can these models generate experimentally testable mechanistic hypotheses of 
internal biological computations? 
We show that model reduction on artificial networks can generate new experimentally testable 
hypotheses. 

• Deep learning mostly concerns the accuracy of the input-output mapping. 
• Neuroscience aims to understand the internal computational mechanisms of generating the output 

given sensory stimuli.

Model reduction: Identifying important sub-circuits
Average over uniform directions and keep only important units
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Quantify “importance” of artificial neurons, and identify important sub-circuits

chose “sign” (excitatory/inhibitory) of artificial neurons

Average over uniform directions of artificial spatiotemporal stimuli
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Werner et al. 

No predictive latency of the peak

Gao et al.

No LRC found in bipolar cells

Compare with existing circuit models in systems neuroscience

A “new and only” model that captures “predictive latency” 
One ON-bipolar pathway is always active, while the other is only active in high-frequency

Higher frequency     Cell-type 2 responds more strongly     shifts response earlier

Q1. What computational mechanism causes the large amplitude burst?

Q2. How is the latency of the peak proportional to the period of the flashes?
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Experimental data
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Integrated Gradients: How important is a neuron?
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Figure 2: IntegratedGradients
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(ii) Exploit stimulus invariances to reduce dimensionality.

(i) Apply chain rule to evaluate importance of hidden layer neurons
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Can we 
bridge the Gap?
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Motion reversal
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Latency coding
Gollisch & Meister (2008)

Figure 1

Training input 
Natural scene movie

Training output 
Ganglion cells’ response

Experimental dataOmitted stimulus response Model output
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Training procedure: natural scenes

Testing procedure: structured stimulus

Motion anticipation
Berry et al. (1999)
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A. Fischer

Convolutional neural network models 
• originally inspired by biological neural circuits 
• potentially over-parameterized 
• generalize to wide arrays of visual stimuli

Prediction by deep learning models
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Models in systems neuroscience literatures

Eye Smarter than Scientists Believed.

Tim Gollisch, Markus Meister (2009)Reproduced from N. Maheswaranathan, L. McIntosh et al. (2018)
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Cell-type 6: Slower response with very short memory

Cell-type 2: Fast response with long memory tail

L. McIntosh, N. Maheswaranathan et al. NeurIPS (2016)

M. Sundararajan et al. ICML (2017)


