
(At left) Average RNN response 
to changes in contrast during 
full-field flicker sequences show 
overshoot and undershoot during 
the low-to-high and high-to-low 
contrast transitions, respectively. 
LN and CNN models do not 
capture this phenomenon.

Visual stimuli
The natural stimulus consisted of a 
sequence of jittered natural 
images, changed every second, 
sampled from the Tkacik natural 
image database [2].
The spatiotemporal binary white 
noise stimulus consisted of 55 µm
checkers at 30 Hz.
Models were never trained on 
structured stimuli.

under Poisson spike generation,                                           . We 
explored a variety of architectures for the convolutional network, 
varying the number of layers, number of filters per layer, the type of 
layer (convolutional or fully connected), and the size of the 
convolutional filters. 

Model training
Models were trained with a loss 
function corresponding to the 
negative log-likelihood
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Much of our understanding of early sensory systems comes 
from studies using artificial stimuli, such as white noise and 
structured stimuli (e.g. bars, gratings, and flashes).

Previous models of the retinal response, such as the linear-
nonlinear (LN) model, capture responses to these stimuli but 
fail to generalize to ethologically relevant, natural stimuli.
Deep convolutional neural networks demonstrate success at 
many image and pattern recognition tasks [1], but can they 
capture  computations in biological visual pathways when 
viewing natural movies?
We demonstrate that deep neural network models are 
considerably more accurate than pre-existing models at 
modeling retinal responses to artificial and natural stimuli and 
generalize significantly better across stimulus types. 
Furthermore, probing the models using structured stimuli 
reveals nonlinear computations important for biological vision.
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Conclusions
• Convolutional and recurrent neural networks are 

substantially better at predicting retinal responses than LN 
models on white noise and natural scene stimuli.

• These networks trained on natural scenes recapitulate 
nonlinear retinal response properties to held-out structured 
stimuli.

• Distilling computational insights from deep networks trained 
to model responses of biological sensory systems can unlock 
the mystery of how these systems encode natural stimuli.
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Contact information

Paired flash responseFrequency doubling with 
reversing gratings

Methods Retinal recordings
Models were trained on 
multielectrode array recordings of 
salamander retinal ganglion cells.
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CNNs respond to both phases 
of the reversing grating, unlike 
LN models, indicative of 
nonlinear spatial integration.

PD
F

convolution

dense
dense

soft rectification

r̂t

convolutional filters example affine unit
receptive fields

example model 
receptive fieldstimulus

convolution

dense dense

threshold

W1
W2

W0

tra
in

ed
 o

n 
w

hi
te

 n
oi

se

time

LSTM

LM: NSF, NVIDIA Titan X Award, NM: NSF, AN and SB: NEI grants, SG: Burroughs Wellcome, Sloan, McKnight, Simons, James S. McDonnell 
Foundations and the ONR

Acknowledgements

Architecture and learned features 

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

 
on

 H
el

d-
O

ut
 D

at
a

0.0

0.2

0.4

0.6

0.8

RNN CNN

L-exp
LN

Retinal PSTH-to-PSTH reliability

0.0

0.2

0.4

0.6

0.8

RNN CNN

L-exp
LN GLM

0 1Time (s)

Fi
rin

g 
Ra

te
(s

pi
ke

s/
s)

0

4

Fi
rin

g 
Ra

te
(s

pi
ke

s/
s)

0

4

LNCNN

0

15

30

1.
1 

m
m

 g
ra

tin
g

44
0 

m
icr

on
 g

ra
tin

g

Fi
rin

g 
Ra

te
(s

pi
ke

s/
s)

Fi
rin

g 
Ra

te
(s

pi
ke

s/
s)

1 20

0.5 1

Time (s)

0

15

30

0

500 ms

250 ms

LNCNNRF Center
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CNN = Convolutional neural network
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LN models are more susceptible to 
overfitting than CNNs
(At right) We find that the CNN model 
trained using just 8 minutes of data has 
better held out performance than an LN 
model fit using a 60 minute recording.

CNNs exhibit luminance 
adaptation, by suppressing the 
response to a paired flash.
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