Deep learning models reveal diverse computations in the retina under natural scenes

Niru Maheswaranathan^{1*}, Lane McIntosh^{*}, David B. Kastner², Luke Brezovec, Aran Nayebi, Surya Ganguli and Stephen A. Baccus Stanford University. ¹Currently at: Google Brain. ²Currently at: UCSF

Introduction

Synthetic stimuli for probing sensory systems:

Advantages

Control stimulus properties parametrically (e.g. orientation) Isolate particular mechanisms/effects

Disadvantages

May push the circuit outside its natural operating regime Often requires clever insight and design

Goal: Understanding sensory responses to natural stimuli

- Are circuit computations discovered using structured stimuli relevant for natural vision?
- Do models trained on synthetic or natural stimuli exhibit different phenomenology?

Our approach:

- Train a deep neural network to model retinal responses to natural stimuli
- See if the model exhibits known retinal phenomenology

CNNs accurately describe natural scene responses

• Recorded salamander ganglion cell responses to white noise and natural scene stimuli. • Fit CNN models to predict retinal spikes (blue), compared to LN models as a baseline (orange)

Population summary across *n*=37 cells:

Generalization to diverse phenomena

Remarkable match between retinal properties & internal model components Generalization beyond training distribution

- Diverse known nonlinear computations are engaged by natural stimuli Fitting models to natural stimuli is sufficient for capturing this phenomenology

Comparing model units to retinal interneurons Example 1st layer subunits Example bipolar cell Filtered Input Example 2nd layer subunits Example adapting amacrine cells -2 -1 0 1 -0.5 0.0 0.5 Delay (s) Example model 2nd layer units Example model 1st layer units transient ON Correlations between retinal interneurons and model units Amacrine 0.4 Subunit of CNN trained on RGCs from second retina - -0.4 mm 20 40 60 80 . _ _ _ _ _ _ _ _ _ _ _ _ Amount of data (seconds) La La Time (s)

Diversity in instantaneous receptive fields

Instantaneous receptive field (RF) Gradient of model neuron wrt. stimulus

I N model

- Shows the most effective stimulus at each instant of time
- Visualizes stimulus-specific sensitivity

Conclusions

- Implications for using deep networks to study neural systems:
- Implications for retinal encoding of natural scenes: