
Introduction Generalization to diverse phenomena Comparing model units to retinal interneurons

Diversity in instantaneous receptive fields

Conclusions

CNNs accurately describe natural scene responses

Deep learning models reveal diverse computations in the retina under natural scenes
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Synthetic stimuli for probing sensory systems:

Goal: Understanding sensory responses to natural stimuli

Our approach:

● Are circuit computations discovered using structured stimuli relevant for natural vision?

● Train a deep neural network to model retinal responses to natural stimuli
● See if the model exhibits known retinal phenomenology

● Do models trained on synthetic or natural stimuli exhibit different phenomenology?

● Recorded salamander ganglion cell responses to white noise and natural scene stimuli.
● Fit CNN models to predict retinal spikes (blue), compared to LN models as a baseline (orange)

Population summary across n=37 cells:
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Implications for using deep networks to study neural systems:

Implications for retinal encoding of natural scenes:

✔ Remarkable match between retinal properties & internal model components

✔ Diverse known nonlinear computations are engaged by natural stimuli

✔ Generalization beyond training distribution

✔ Fitting models to natural stimuli is sufficient for capturing this phenomenology

May push the circuit outside its natural operating regime
Often requires clever insight and design

Control stimulus properties parametrically (e.g. orientation)
Isolate particular mechanisms/effects

Advantages

Disadvantages

Natural scenes White noise
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Comparing of receptive field sizes Correlations between retinal interneurons and model units

Instantaneous receptive field (RF)
Gradient of model neuron wrt. stimulus
● Shows the most effective stimulus at
each instant of time

● Visualizes stimulus-specific sensitivity

Example model 1st layer units Example model 2nd layer units
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