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A major long-term goal of computational neuroscience will be to identify which learning rules actually drive learning in 

any given neural circuit. Along the route to this goal, it will be necessary to develop practically accessible experimental 

observables that can efficiently separate between hypothesized learning rules. So suppose you could observe a set of 

neurons in a circuit over the course of learning: 

What would you measure to identify the plasticity rule operative within that circuit?

This turns out to be a substantial problem, because it is difficult on purely theoretical grounds to identify which patterns 

of neural changes arise from given learning rules, without also knowing the overall network architecture and loss function

target (if any) of the learning system. We ask this question in ANNs, combining what we can measure in neuroscience with 

what we can conclude given that we know the ground truth learning rule in this setting.
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- We can identify learning rules only on the basis of aggregate statistics of 

observable measures: weights, activations, or layer-wise activity changes

- Simple (non-linear) classifier such as Random Forest generalizes across 

certain held-out classes of input types (“architecture” and “training curricula” 

holdouts)

- Measurements temporally spaced further apart are more robust to 

trajectory undersampling, for each observable measure

- Aggregate statistics across units of the network’s activation patterns are 

most robust to unit undersampling and measurement noise

- Hypothesis: in vivo electrophysiological recordings of post-synaptic 

activities from a neural circuit on the order of several hundred units, 

frequently measured at wider intervals during the course of learning, may 

provide a good basis on which to identify learning rules

Experimental Collaborations Welcome!
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