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This turns out to be a substantial problem, because it is difficult on purely theoretical grounds to identify which patterns E 0 ,_g g c 2 ﬁ > 2 q E 2 ﬁ § 2 q E Ll 26.4% 50.8% 14.3% 8.5% [ S
e AEE g g — [
of neural changes arise from given learning rules, without also knowing the overall network architecture and loss function m’c&' "29 8 i 2 Zs i >§‘ s‘) 2§ 30% > Q] @) > a1 @) > S E > g1 @) =ETN 11.0% 14.2% 63.1% 11.6% [ KRS0
EIE R EEHET . o7 o2 o & o2 : o
target (if any) of the learning system.WVe ask this question in ANNs, combining what we can measure in neuroscience with Layer-wise 9p U U . O _ 13.5% 6.2% 9.0% 71.3% 0 e
Layer . L . FA 3%
Position Weights Activations Activity All Weigh Activations Layer-wise Activity oo
what we can conclude given that we know the ground truth learning rule in this setting. Changes Observables Changes Adam S ed tlass '

Sparse Subsampling Across Trajectory Activations Robust to Measurement Noise Conclusions
RObUSt to Undersampling & Unit Undersampling - We can identify learning rules only on the basis of aggregate statistics of

Layer-wise observable measures: weights, activations, or layer-wise activity changes

Activations Activity Change _ . . )
87 0%77%86%88%89% 77%79%82%84%86% 100%.:1:1/ - Simple (non-linear) classifier such as Random Forest generalizes across

Holdouts of Entire Classes of Input Types
(Strong Generalization to Architecture
& Training Curriculum)

100% Dense Subsampling 100% Intermediate Subsampling 100% Sparse Subsampling

E—— —

90% // 90% 20% /

80% 80% 80%

7297 6%88%88%88% 79%78%81%82%87% 0 : : , - :
[ "7 i 75% certain held-out classes of input types (“‘architecture” and “training curricula”

111/4463%67 %86%85%87% 78%80%82%82%87% 50%

P -LA78%80%81%85%87% 77%80%82%83%86% 25% holdouts)

0 7A77%77%82%80%84% 78%79%82%81%87% 10% LR - Measurements temporally spaced further apart are more robust to

1 07462%67%71%76%85% 79%80%80%82%85% K747 4%78%89%88%

70% 70% 70% trajectory undersampling, for each observable measure

45%51%58%67%82%| 1 8 81%81%82%82%86%][| ' V:F-M1 kL7863 %7 1%79%82%

0
0
0
(]
IS
S
o
o
]
L

ubsample Percentage

None
None
None

All Observables

"
60% 60% 60% Weights PR L PR 114 0%42%048%58%79%) £ 81%81%84%85%89% . [\[: LRV PALI55%56%64%68%76% - Aggregate statistics across units of the network’s activation patterns are
Activations

Test Accuracy

: » Y LA52%47%57%57%74%| [T E 2 A82%83%84%84%84% [l - Pk 2744 8%43%48%45%44% _ _ _
Layer-wise Activity Changes 05 1050 105 1050 105 1050 most robust to unit undersampling and measurement noise

10 % 52 % 100 % 10 % 19 % 29 % 10 % 19 % Gaussian Noise

Subsample Proportion _ o Layer-wise - Hypothesis: in vivo electrophysiological recordings of post-synaptic
100% Middle Early  Middle Late Activations Activity Chanc

Early  ppooo 01 1 A80%81%90%86%88% activities from a neural circuit on the order of several hundred units,
90% = Late

80%
70%
60%
50%
40%
30%

Un

N

>
0
0

7 5% AL LEE 86%86%

Test Accuracy

frequently measured at wider intervals during the course of learning, may
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