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Abstract

We leverage vector space embeddings of sentences and
nearest-neighbor methods to transform a small amount of
labelled training data into a significantly larger training set
using an unlabelled corpus. The quality of the larger train-
ing set is measured by prediction accuracy on a bench-
mark sentiment analysis task. Our results indicate it is
possible to achieve accuracy within 3-5% of the baseline
using only 5-8% the amount of labelled data.

1 Introduction

Many statistical learning approaches to sentiment analysis
require large amounts of labelled training data. Acquiring
large corpora of labelled data is often a time consuming
and expensive process. Additionally, the Internet contains
vast stores of data that could be useful for sentiment clas-
sification, but there is not an obvious way to use this data
without first hand annotating each sentence.

The goal of this project is to explore how to use a small
set of labelled data and a large set of unlabelled data
to construct models with accuracy comparable to those
trained on large sets of exclusively labelled data.

Given a large training set with just a few pieces of la-
belled data, the naive approach is to simply ignore the un-
labelled data and train a classifier only on hand-annotated
sentences. Intuitively, however, one should be able to
achieve improved accuracy by also considering the unla-
belled data. One might hope to find some way to use the
labelled data to find good labels for the unlabelled data.
In general, this problem is as difficult as the original in-
ference task, so we focus on fast, heuristic procedures.

At a high level, our approach will be to find similar sen-
tences in the unlabelled data and assign them a label that
matches a reference sentence in the seed set. To make the
notion of “similarity” between sentences precise, we rep-
resent each sentence as a vector in a high dimensional vec-
tor space and use Euclidean distance between sentences as
a proxy for similarity.

To construct embeddings that capture the semantics of
a particular sentence, we build embeddings directly from

distributed representation of words, e.g. [2].
Given some fixed sentence embedding, we use the seed

set to assign labels to the closest neighboring sentences
in this high dimensional space. Then, equipped with this
expanded training set, we use the resulting sentence em-
beddings as features in a standard sentiment analysis task.

The performance of our semi-supervised inference pro-
cedure is evaluated against the baseline training set, which
uses the entire labelled corpus. Despite receiving signifi-
cantly less training data, our results indicate that it is pos-
sible to achieve accuracy within 3 � 5% of the baseline
with a seed set 5% of the size of the baseline and a small
number of nearest neighbors.

2 Preliminaries

2.1 Data

We apply our semi-supervised approach to the benchmark
sentiment analysis task introduced in [5]. The data for this
task is the Stanford Sentiment Treebank [5]. The Stan-
ford Sentiment Treebank consists of 11,855 single sen-
tences extracted from www.rottentomatoes.com

movie reviews, and includes a total of 215,154 unique
phrases that have been annotated by three human judges.

Each sentence is labelled with one of 5 sentiment
classes, 0 for “very negative”, 1 for “negative”, 2 for “neu-
tral”, 3 for “positive”, and 4 for “very positive”. This
dataset is then decomposed into training, development,
and test sets of 8544, 1101, and 2210 sentences, respec-
tively.

As a simplification, we consider only the more coarse-
grained 3-class classification task, where the labels are
{Negative,Neutral, Positive} obtained by bucketing “very
negative” and “negative” as well as “positive”, and “very
positive” into two classes.

From this larger corpus, we allow our algorithms to
only access the true labels of a small subset of this data,
which we refer to as the “seed set.” We stress that the text
of the other sentences is known to the algorithms, but their
corresponding labels are not.

To ensure the models we develop are robust to changes
in the seed set, we generate a new seed set on each run of

www.rottentomatoes.com


Figure 1: Visualization of Distributed Sentence Representations

the algorithms by randomly sampling the set of sentences.

2.2 Features: Distributed Sentence Repre-

sentation

Each sentence s is represented as a vector s 2 R300. To
construct this representation, we use a semantic vector
space model of language, where each word is represented
by a real-valued vector. These vector representations are
taken from a database of 6 billion word vectors trained on
a corpus of 840 billion tokens using the GloVe model [2].

To obtain a sentence representation for sentence s =
s1s2, . . . , sn, we take the average of the word vectors
s1, s2, . . . , sn where si is the GloVe vector correspond-
ing to the i-th word in the sentence. As demonstrated in
[5], this naive word vector averaging often outperforms
bag of words and bag of n-gram models. Equipped with
this representation, the distance between two sentences is
then simply the `2 distance.

To gain some intuition about the topology of the result-
ing vector space of sentences, we visualize a random sub-
set of the sentence embeddings using both t-SNE [4] and
principal components analysis. The corresponding plots
are given in Figure 1.

One salient observation from Figure 1 is that the vector
space representation appears to encode semantic qualities
of the individual sentences. Examining the local geome-
try in the t-SNE plot reveals that sentences with similar
sentiment tend to appear together in local clusters. Fur-
thermore, examining the PCA plot shows a desirable or-
dering of the examples with respect to sentiment. After

projecting the data into two dimensions, the sentences are
roughly ordered along the first principal component with
respect to sentiment. Sentences with positive sentiment
are positive along this axis, neutral sentences are near 0,
and negative sentiment sentences are negative.

This result makes intuitive sense since we expect the
words typically in positive reviews to be somewhat dis-
tinct from the words typically in a negative review and ap-
pear together in a local cluster in the GloVe vector space.
Hence, the corresponding vector averages and the clusters
for each of these classes should also be distinct.

Figure 2: Distribution of Nearest Neighbors Sentiment
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3 Models

3.1 Extending the Training Set

Motivated by the discussion in the previous section, we
propose the following approach to extend the small seed
set of labelled data into the full training set. Let S denote
the set of sentences, and let I denote the seed set.

To construct a larger training set, we find the k-nearest
neighbors for each sentence s 2 I , as measured by Eu-
clidean distance. Then we add each of the nearest neigh-
bors to the training set with the same label as s.

We emphasize that the true label of these sentences is
unknown to the model, and the assigned label is only a
heuristic guess. Both the size of the initial seed set I and
the number of nearest neighbors, k, are parameters in the
model, and we will study classification accuracy as these
numbers vary.

As a justification for this approach, consider Figure 2.
This plot gives the number of nearest neighbors with
a particular sentiment label for each label in the seed
set. For each seed set label, the most common nearest-
neighbor label is precisely the original label with the dis-
tribution being particularly accurate for “positive” and
“very positive sentences.” As should also be clear, this
procedure does introduce some noise into the training set.
We discuss the effect of this noise and its impact on clas-
sification accuracy in Section 5.

After constructing the expanded training set, we train
a sentiment analysis classifier on the resulting sentences.
We briefly describe the top two performing models for
this task, as measured by accuracy on the full, labelled
training set.

3.2 Regularized SoftMax Regression

Regularized SoftMax Regression generalizes logistic re-
gression to the multi-class setting. The model is param-
eterized by ✓i 2 R300 for classes i = 1, 2, . . . , k and a
regularization parameter � 2 R, which is chosen via 10-
fold cross-validation. The objective function is given by
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To improve the rate of convergence, we implemented
softMax and optimized J(✓) using adaGrad, which im-
proved convergence by an average of 1200 iterations [3].

3.3 Multi-Class Support Vector Machine

We also explored the performance of an open-source
Multi-Class SVM implementation [1]. In particular, we
used a one-versus-one SVM, which constructs and trains
a separate `1-soft-margin SVM for each pair of classes.
At test time, each SVM separately classifies the sentence,
and the sentence receives the label of the class with the
highest number of votes. For each SVM, the objective is:

min
w,⇠,b
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)

subject to

yi(w · xi � b) � 1� ⇠i, ⇠i � 0 for i = 1, . . . n

4 Results

To evaluate the success of our nearest-neighbor methods,
we first trained and tuned both classifiers on the entire
labelled training set. The table below gives the classifi-
cation accuracy for various choices of � and kernels in
the SVM. Where parameters are not specified, they are
set to the optimal values found via cross-validation. **
indicates the top performing models.

Baseline Model Accuracy
**SoftMax (� = 0.05) 0.763
SoftMax (� = 10�4) 0.761
SoftMax (� = 0) 0.758
**SVM (Linear Kernel) 0.759
SVM (Gaussian Kernel) 0.734
SVM (Polynomial Kernel) 0.591
SVM (Sigmoid Kernel) 0.632

The following table gives the performance of the top-
performing models for different seed set sizes |I| and
number of nearest neighbors k. Figure 3 shows classi-
fication accuracy as a function of the number of examples
(|I| · k) for various k number of nearest neighbors com-
pared to the baseline, which is the accuracy of the classi-
fier trained on the full dataset. Results are averaged over
25 random trials.
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Figure 3: Classification accuracy as a function of seed set size and number of neighbors

Model with Nearest Neighbors Accuracy
SoftMax(|I| = 500, k = 5) 0.715
SoftMax(|I| = 200, k = 10) 0.691
SVM (|I| = 500, k = 5) 0.725
SVM (|I| = 200, k = 10) 0.709

4.1 Error Analysis

To better understand the errors made by both classifiers,
consider the confusion matrices given below for each clas-
sifier trained on the full labelled training set. Both classi-
fiers are extremely accurate in predicting labels for posi-
tive and negative sentences. Further examination reveals
that as few as 100-200 labelled sentences and 5-10 nearest
neighbors is actually sufficient to separate the positive and
negative classes for most examples with either classifier.

On the other hand, both classifiers experience poor per-
formance on the neutral class, with increases in labelled
data only slightly improving accuracy. There are several
potential reasons for this inequity. First, the t-SNE plot
given in Figure 1 suggests that neutral sentences do not
exhibit the same clustering properties as positive and neg-
ative sentences and are more loosely scattered throughout

the space.
Additionally, the labels for neutral sentences, even

those made by human judges, are often imprecise. As
a canonical example, consider the sentences: “It ’s never
dull and always looks good” and “Alas , another breath-
less movie about same!” The first sentence is seemingly
positive, while the second one is seemingly negative, but
both are neutral sentences in the treebank.

This ambiguity makes it difficult to train classifiers that
can correctly distinguish between a “positive” review and
a “neutral” review with positive words or a “negative” re-
view and a “neutral” review with negative words

5 Discussion

As the tables in Section 4 and Figure 3 indicate, extending
the subsampled training set using nearest neighbor pro-
duced classification accuracies within 3-5% of the base-
line achieved on the entire training set, even with 1/16-th
the amount of labelled data.

In the k = 1 case, where half of the data is unlabelled,
it is somewhat surprising that we can achieve performance
roughly equivalent to simply doubly the labelled training
set. What is also especially interesting is the k = 12
case, where only 8% of the data is originally labelled.
Even when the training set is significantly subsampled,
extending the training set by a factor of 12 obtains accu-
racy within 5% of the baseline as the number of exam-
ples grows. This suggests, for problems lacking signifi-
cant amounts annotated training data, our nearest neigh-
bor methods allow one to significantly expand the training
set and obtain correspondingly higher accuracy.
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One observation from Figure 3 is all of the models
have performance that is asymptotically lower than using
purely labelled data. This is likely the cost of noise intro-
duced by expanding the training set using nearest neigh-
bors, as Figure 2 indicates that not all of our examples are
accurately labelled. While this was not a significant issue
in our experiments, it is an open question as to how this
approach scales with the problem size.

Finally, all of our methods had difficulty correctly clas-
sifying neutral sentences. We posit that neutral sentence
vagueness breaks our assumption that the words typically
in neutral sentences are unique to neutral sentences. Con-
sequently, unigram averaging is an insufficiently power-
ful model to capture this ambiguity and does not produce
classifiers with good accuracy.

These inaccuracies are a failure of our sentence rep-
resentation rather than a failure of our nearest neighbor
methods. It is likely that, given access to a more powerful
sentence representation, nearest neighbor methods would
yield the same boost in accuracy obtained by extending
the training set, but also provide better classification of
neutral sentences.

6 Conclusion

Our results indicate that a small seed-set of labelled sen-
tences and nearest-neighbor methods are often sufficient
to achieve classification accuracy within 3-5% of the
baseline consisting entirely of labelled data. This sug-
gests, at least in the case of sentiment analysis, it is pos-
sible to achieve high accuracy without a substantial in-
vestment in the construction of a large, hand-annotated
training set.

Viewed in another light, we expect that classifiers tuned
and trained on benchmark datasets could be further im-
proved by applying our techniques to large unlabelled
bodies of text, e.g. the Wikipedia corpus, and then re-
training them on an expanded training set.

Much of the improvements in accuracy come from in-
creased performance on positive and negative sentences.
Our experiments suggest 100-200 labelled sentences and
10 nearest neighbors is sufficient to separate these two
classes. However, neutral sentences are substantially
more difficult, and increases in seed set size only slightly
improve accuracy. This is likely because neutral sentences

are more evenly distributed in the semantic vector space
than the locally clustered positive and negative sentences.

All of the classifiers we tried asymptotically converged
to roughly 76% accuracy when trained on the full labelled
training set. This appears to be a “fundamental limit” on
the capabilities of simple unigram averaging as a form
of sentence representation. To improve this number, we
must use a more complex sentence representations and
perhaps more sophisticated classifiers. In these instances,
it is likely that our technique of extending the training set
via nearest neighbors will yield improvements in accu-
racy.

7 Future Work

Our results suggest several extensions to generating a
more effective classifier. First, averaging word vectors
destroys valuable context and syntactic information. We
are exploring different representations of sentences that
preserve more of the linguistic structure in an attempt to
improve accuracy beyond 76%. Additionally, the seed set
has a large impact on the chosen nearest neighbors. It
would be interesting to explore how choices in the seed
set affect our results.
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