
GRUV: Algorithmic Music Generation using
Recurrent Neural Networks

Aran Nayebi
anayebi@stanford.edu

Matt Vitelli
mvitelli@stanford.edu

Abstract

We compare the performance of two different types of recurrent neural networks
(RNNs) for the task of algorithmic music generation, with audio waveforms as
input. In particular, we focus on RNNs that have a sophisticated gating mecha-
nism, namely, the Long Short-Term Memory (LSTM) network and the recently
introduced Gated Recurrent Unit (GRU). Our results indicate that the generated
outputs of the LSTM network were significantly more musically plausible than
those of the GRU.

1 Introduction

Algorithmic music generation is a difficult task that has been actively explored in earlier decades.
Many common methods for algorithmic music generation consist of constructing carefully engi-
neered musical features and rely on simple generation schemes, such as Markov models or graph-
based energy minimization techniques. While these approaches are sometimes able to produce in-
teresting compositions, the resulting musical pieces usually consist of repetitive sequences and lack
thematic structures that are common in most musical works.

With the increase in computational resources and recent advancements in recurrent network archi-
tectures, novel music generation may now be practical for large-scale corpuses. The most com-
mon recurrent network used for modeling long-term dependencies is the Long Short-Term Memory
(LSTM) network, introduced by Hochreiter and Schmidhuber [5] in 1997. Recently, Gated Re-
current Units (GRU), introduced by Cho et al. [1], have been used to effectively model long-term
dependencies in a variety of generic sequence modeling tasks. We believe that by using LSTM
and GRU networks for the task of algorithmic music generation, we can better model the long-term
thematic structure of musical pieces and produce compositions that sound unique and musically
coherent.

2 Background/Related Work

Recurrent networks have been previously used for music generation and analysis tasks with some
success. Eck and Schmidhuber [4] used Long Short Term Memory (LSTM) networks to analyze
the structure of common Blues songs using binary vectors to model individual notes appearing in a
fixed sequence.

Chung et al. [3] used GRU networks to model polyphonic music sequences using MIDI datasets and
found their performance comparable to that of LSTM networks.

While the works listed above have applied recurrent networks to the task of music sequence mod-
eling, neither of these sources attempted the task of recurrent music sequence modeling using raw
audio waveforms as inputs. In this sense, our project is entirely novel as our network attempts to
perform music sequence modeling by directly operating on the waveform representation of the data.

1



3 Technical Approach and Models

We define our problem of music sequence modeling formally as follows:

Given a set of vectors Xt, Xt−1, . . . , X0, representing audio waveforms at the time intervals t,
t− 1, . . . , 0, we would like to generate the most likely vector Xt+1 representing an audio waveform
at the next time interval t+ 1.

In essence, this is a sequence modeling task in which we are trying to estimate the next sequence
conditioned on the previous sequences. In the case of our problem, the inputs are naturally continu-
ous and hence we can frame the problem of estimating Xt+1 as a regression task.

We can perform this regression by using a recurrent network in which each feed-forward computa-
tion results in a new estimate X̂t+1 representing our best guess for Xt+1. By training the network
on various already known waveforms, we can learn useful priors to aid in future generation tasks.

Our loss function is L2 loss, given by,

`(θ) ≡ 1

T

∑
t

(Xt − X̂t)
2, (1)

where T is the number of timesteps.

Model Representation

One of the benefits of phrasing our problem as a regression task across the waveforms of an audio
sequence is that we can feed the recurrent network any manner of audio data we have available for
training purposes. As such, all of our training data is represented as raw audio samples extracted
from songs encoded in the popular WAV format. In order to simplify training, we convert each song
into a mono-channel waveform sampled at 44.1 Khz. Since most songs split audio samples into two
channels arbitrarily based on the composer’s preference, we would like our algorithm to generalize
well across a wide variety of composers and hence, converting the original audio samples into a
single channel allows us to compensate for this. It also serves as a means of reducing the dimension-
ality of our audio data. We fix the sampling rate to 44.1 Khz to allow us to use constant word sizes
for training and generation tasks. While audio data is typically represented as samples of a wave-
form in the time domain, it is usually more meaningful to analyze audio in the frequency domain.
After reading the audio samples, we split the audio samples up into blocks of size N and convert
each block into its frequency representation using the discrete-Fourier transform (DFT) algorithm.
The transformation results in a vector of N real numbers and a vector of N imaginary numbers
that collectively make up the phases and magnitudes of the time domain waveform. We concatenate
these vectors together to create a 2N vector that is used as the internal model representation for our
network.

Network Architecture

The two networks we use in our task are the GRU and the LSTM. We describe their architectures
below (cf. [3], Sections 3.1-3.2).

GRU architecture

The activation ht of the GRU at time t is a linear interpolation between the previous activation ht−1

and the candidate activation h̃t:
ht = (1− zt) ◦ ht−1 + zt ◦ h̃t, (2)

where the update gate zt decides how much the unit updates its activation, or content, and ◦ denotes
element-wise product. The update gate is computed by

zt = σ (Wzxt + Uzht−1) . (3)

The candidate activation is h̃t is computed by

h̃t = tanh (Wxt + rt ◦ (Uht−1)) , (4)
and the reset gate rt is computed by

rt = σ (Wrxt + Urht−1) . (5)

2



LSTM architecture

Each LSTM unit maintains a memory ct at time t. The output ht is given by
ht = σt tanh (ct) , (6)

where σt is an output gate that modulates the amount of memory content exposure. The output gate
is computed by,

σt = σ (W0xt + U0ht−1 + V0ct) , (7)
where V0 is a diagonal matrix. The memory cell ct is updated by partially forgetting the existing
memory and adding a new memory content c̃t:

ct = ft ◦ ct−1 + it ◦ c̃t, (8)
where the new memory content is

c̃t = tanh (Wcxt + Ucht−1) . (9)
The extent to which the existing memory is forgotten is modulated by a forget gate ft, and the
degree to which the new memory content is added to the memory cell is modulated by an input gate
it. Gates are computed by

ft = σ (Wfxt + Ufht−1 + Vfct−1) , (10)
it = σ (Wixt + Uiht−1 + Vict−1) , (11)

where Vf and Vi are diagonal matrices.

In our implementation, we make use of a single GRU unit and a single LSTM unit to represent
transitions between previous hidden states and future hidden states. After a new hidden state has
been generated, we use an affine transformation to convert the hidden state directly to its resulting
frequency representation. We then evaluate the L2 error between our estimates of the frequency
representation and the ground-truth frequency representation.

4 Musical Sequence Generation

After training the network, we can generate new musical compositions by providing a seed sequence
St, St−1, . . . , S0, representing seed audio waveforms at the time intervals t, t − 1, . . . , 0. The first
step is to perform a feed-forward computation on the seed sequence. After the feed-forward compu-
tation is complete, we are left with a new set of vectorsRt+1, Rt, . . . , R1, representing the predicted
audio waveforms at the time intervals t+1, t, . . . , 1. We call this collection of vectors the generation
sequence. In the second step, we then perform another feed-forward pass with the entire generation
sequence as input and append the last vector estimate to the generation sequence. For example,
assuming our generation sequence was from Rt+k, Rt+k−1, . . . , R1, we would append the estimate
for Rt+k+1 to the generation sequence at the end of the second step.

We then iteratively perform the second step until we have generated a sufficiently long sequence as
specified by the user. It is important to note that there are three main parameters to the generation
algorithm: the size of the seed sequence, the contents of the seed sequence, and the number of
iterations we perform sequence prediction. We discuss these parameters in greater detail in the
section below.

5 Experiments & Results

Implementation

We initially wrote our own GRU and LSTM implementations. However, we soon found that these
implementations were insufficient for training over a large corpus, mainly due to the fact that they
did not leverage GPU acceleration. For instance, as a benchmark, training our GRU implementation
on a single 10 second sample of a Madeon song for 100 epochs took 12 hours. As a result, we
implemented the GRU and LSTM using the Keras library [2], which uses Theano for fast tensor
manipulation and CUDA-based GPU acceleration. We trained both our models on the Stanford Rye
clusters, which have powerful GPUs. In particular, the Rye 1 cluster has a Tesla C2070 GPU, and
the Rye 2 cluster has a GTX 480 GPU.

3



Figure 1: Training and dev loss of the GRU and LSTM for 2,000 epochs on each dataset (Madeon
and David Bowie), each having 2048 hidden dimensons.

Datasets

We used two training corpuses, each consisting of twenty songs that are roughly 3 to 7 minutes
long from two different artists. The first corpus consisted of 20 popular songs from David Bowie (a
rock artist) and the second corpus consisted of 20 popular songs from Madeon (an electronic dance
music artist). We also gathered other music from Rock, Pop, EDM (electronic dance music), and
Alternative genres, but due to time and memory constraints of our GPU hardware, we were unable
to perform thorough training across all genres.

Network Training

We trained both the LSTM and GRU networks on 80% of each corpus with 10 second long clips per
training example and performed validation on the remaining 20%. Our intuition was that training
separate networks for each corpus likely results in better performance and more coherent melodies
than training a single network across all genres. As such, we trained two separate networks for
each of the two genres. The LSTM and the GRU networks were both trained for 2000 epochs for
each corpus. Each sample is a quarter of a second long and each network consisted of 2048 hidden
dimensions. As is evident from Figure 1, the David Bowie dataset exhibits a considerably higher
dev loss compared to the Madeon dataset and appears to overfit far sooner as well. We believe
the reasons for this are primarily that the David Bowie dataset contains more variety and musical
complexity compared to Madeon. In addition, all of Madeon’s music is digitally produced, so it is
in essence entirely noise-free.

We tested our network under a variety of scenarios to find the optimal hyperparameters for our net-
work. The primary hyperparameters are the number of hidden dimensions, the size of the inputs of
the waveforms, and the number of recurrent layers in the network. Overall, we found that adding
more recurrent layers made our network much more difficult to train and the weights for both GRU
and LSTM were often more likely to become stuck in a local minima early in the training process.
The number of hidden dimensions has a direct impact on the quality of our generation and in essence
acts like a compression factor for our waveforms. As can be seen in Figure 2, for both the GRU and
LSTM, the dev set error is smaller for a larger number of hidden dimensions. Interestingly enough,
having hidden dimensions of size 2048 (corresponding to roughly a tenth of the size of our input
waveforms) seemed to produce the best results and provided a reasonable compromise between our
GPU memory footprint and training time. This hints that audio waveforms are extremely compress-

4



Figure 2: Comparison of hidden dimension sizes on dev set error for both the GRU and LSTM,
when trained for 2,000 epochs.

ible and only a subset of the frequencies are actually relevant for human perception. In fact,it appears
that the salient features for audio data tend to inhabit a low-dimensional subspace and only a subset
of the frequencies present in perceptible music are non-zero.

Generation Experiments

We experimented with each of the music generation parameters under a variety of settings and qual-
itatively evaluated their performance. Unsurprisingly, it seems as though larger seed sequences tend
to produce better results than shorter seed sequences, as the networks have a larger initial generation
sequence and hence a larger context for their hidden layers. The number of iterations in which we
perform sequence prediction also seems coupled with the choice of the initial sequence size. Empir-
ically, generating a sequence that is roughly three times larger than the initial seed sequence tends to
produce coherent music that does not result in generation loops (i.e. cases where the previous hidden
state is very similar to the current hidden state and all proceeding hidden states become stuck in this
pattern). It seems as though longer sequences eventually result in these self-perpetuating generation
loops and the problem becomes quite common as the size of the seed sequence is reduced. We
speculate that with larger training sequences we could likely mitigate this problem and it is likely
that the 10 second training sequences we used are not sufficient for generating long songs spanning
several minutes.

Visualizing the Network

In order to discover what our networks were really learning, we performed an experiment in which
we predicted for every sequence in the dev set the corresponding sequence directly following it.
We then computed the magnitude of each sequence and plotted the mean magnitudes over each 10
second example in the dev set to create a spectogram. The spectogram is shown in Figure 3. In the
ideal scenario, our networks should be able to reproduce the ground truth mean spectrogram. As
is evident from the figure, only a handful of frequency bands are active across time and correspond
to frequencies that occur in natural music. While we did not explicitly sample frequencies within
this band, it appears as though our models have learned to sample this band far more than the other
frequency bands. Interestingly enough, the GRU network appears to have far greater activations
outside of the band range of 4000 - 7000, which is likely why our GRU generated songs sound far
noisier than our LSTM generated songs.

5



Figure 3: Comparison of the ground-truth spectrogram vs. the learned models’ spectrograms.

Summary

The LSTM network consistently exhibited slightly lower training and validation loss than the GRU.
However, on their generated outputs, the LSTM and the GRU network vastly differed. The generated
outputs of the GRU were unsatisfactory and primarily consisted of white noise. On the other, the
generated output of the LSTM network was musically plausible. Therefore, it appears that the added
representation capabilities of the LSTM network resulted in a superior performance over the GRU
network.

6 Conclusion

This project has demonstrated that algorithmic music generation with waveforms as input is pos-
sible with the use of recurrent neural networks, particularly the LSTM network. Interesting future
directions include investigating the effect of adding layers of recurrent units and discovering the
impact that additional layers have on performance. Similarly, it would be worthwhile to perform
network training across genres with a substantially larger corpus. Unfortunately, due to the time and
memory constraints of the Stanford Rye clusters, we were unable to pursue these directions fully.
We are eager to experiment with more complex architectures and larger corpus sizes to see how
well our preliminary results generalize and evaluate the effect of network depth on music generation
performance.

References

[1] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. “On the properties of neural machine translation:
encoder-decoder approaches”. arXiv preprint arXiv:1409.1259, 2014. Presented at the Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation (SSST-8).

[2] F. Chollet. “Keras: Theano-based Deep Learning library”. Code: https://github.com/fchollet.
Documentation: http://keras.io/.

[3] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. “Empirical evaluation of gated recurrent neural networks
on sequence modeling”. arXiv preprint arXiv:1412.3555, 2014. Presented in NIPS 2014 Deep Learning and
Representation Learning Workshop.

[4] D. Eck and J. Schmidhuber. “Learning the long-term structure of the blues”. In J. Dorronsoro, editor,
Artificial Neural Networks ICANN 2002 (Proceedings), pages 284289, Berlin, 2002. Springer. http://
link.springer.com/chapter/10.1007%2F3-540-46084-5_47.

[5] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. Neural Computation 9 (1997): 1735-1780.

6

https://github.com/fchollet
http://keras.io/
http://link.springer.com/chapter/10.1007%2F3-540-46084-5_47
http://link.springer.com/chapter/10.1007%2F3-540-46084-5_47

	Introduction
	Background/Related Work
	Technical Approach and Models
	Musical Sequence Generation
	Experiments & Results
	Conclusion

