
Recurrent versus Recursive Approaches Towards Compositionality in
Semantic Vector Spaces

Aran Nayebi
anayebi@stanford.edu

Heather Blundell
hrblun@stanford.edu

Abstract

Semantic vector spaces have long been
useful for representing word tokens; how-
ever, they cannot express the meaning of
longer phrases without some notion of
compositionality. Recursive neural mod-
els explicitly encode syntactic properties
that combine word representations into
phrases; whereas recurrent neural mod-
els attain compositionality by processing
word representations sequentially. A nat-
ural question that arises is whether recur-
sive models are strictly necessary for at-
taining meaningful compositionality or are
recurrent models sufficient? In this pa-
per, we demonstrate that for the task of
fine-grained sentiment analysis, recurrent
models augmented with neural attention
can outperform a recursive model. Specif-
ically, we introduce a new type of recur-
rent attention mechanism that allows us
to achieve 47.4% accuracy for the root-
level sentiment analysis task on the Stan-
ford Sentiment Treebank, which outper-
forms the Recursive Neural Tensor Net-
work’s (RNTN) previous 45.7% accuracy
on the same dataset.

1 Introduction

Semantic vector spaces for single words have been
a common choice for representing word tokens,
usually obtained by deep learning based methods
from a large-scale data corpus (e.g. (Mikolov et
al., 2013) and (Turney and Pantel, 2010)). For
NLP tasks where the inputs are longer (such as
phrases, sentences, or documents), composition-
ality in semantic vector spaces is essential in order
to combine word tokens into a vector with fixed
dimensionality to be used as a feature for other
tasks. The models used for achieving composi-
tionality are usually either recurrent or recursive

(Li et al., 2015).
Recurrent models effectively deal with time-

series data, and in the context of NLP, can be used
to model a sentence as tokens to be processed se-
quentially, wherein each token is combined with
the embeddings of the tokens that preceded it (El-
man, 1990). For instance, the most basic recurrent
neural network has at each time step t its hidden
state ht to be a point-wise nonlinear function of
the input vector xt that the network receives and
its previous hidden state ht−1, typically using the
hyperbolic tangent function:

ht = tanh(Wxt + Uht−1 + b). (1)

It is important to note that recurrent models usu-
ally do not consider additional linguistic struc-
ture besides word order. On the other hand, re-
cursive models exploit the structure of syntactic
parse trees to combine tokens in a bottom-up fash-
ion starting from the leaves of a parse tree to the
root. An advantage of recursive models is that they
can capture long-distance dependencies between
tokens that may otherwise be syntactically nearby.

However, it is an open question whether this
“recursive advantage” is really an advantage, and
if so, for which tasks. Despite their advantages, an
immediate disadvantage of these recursive mod-
els is that parsing is domain-dependent and error-
prone (not to mention slow), whereas recurrent
models do not face this issue.

Recent work by (Li et al., 2015) has demon-
strated a largely negative answer to this question,
and for most tasks, the gap in performance be-
tween recurrent and recursive models is not dras-
tic, leaving plausible room for recurrent models to
improve. Motivated by these results, our aim is to
construct a sequential recurrent model that attains
improved performance over a recursive model on
a given task. The task we will focus on is the
fine-grained sentence-level (root) sentiment anal-
ysis task, and the recursive model we aim to out-

perform is the Recursive Neural Tensor Network
(RNTN), first introduced by (Socher et al., 2013)
for the task of sentiment analysis.

Somewhat in parallel, the concept of neural at-
tention has gained recent popularity. Typically, the
application of attention mechanisms in NLP has
been used in the task of neural machine transla-
tion, where recurrent models learn alignments be-
tween different modalities to jointly translate and
align words (Bahdanau et al., 2015).

Since our task is sentiment analysis, we plan on
adapting this approach in order provide the recur-
rent network with the ability to learn to selectively
focus on parts of the sentence that may be use-
ful for predicting the output sentiment. In partic-
ular, we will augment a Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
with neural attention, whereby we will introduce
a new recurrent attention model inspired by the
very recent introduction of Deep Attention Fusion
(Cheng et al., 2016).

2 Prior Work

In (Socher et al., 2011), a Recursive Neural Net-
work (RNN) architecture is introduced in order to
combine the deep learning representations of im-
age segments or natural language words, result-
ing in their method outperforming state-of-the-art
approaches (at the time) in syntactic parsing, im-
age segmentation, and scene classification. For
the application of their RNN to syntactic parsing
of natural language sentences, each word was first
mapped into a vector representation using a word
embedding matrix L ∈ Rn×|V | which captures co-
occurrence statistics, where |V | is the size of the
vocabulary and n is the dimensionality of the se-
mantic space. The inputs were then mapped into
a semantic space to be used by the RNN, where
the essential idea is: given the two vector repre-
sentations of the children, denoted by c1 ∈ Rd and
c2 ∈ Rd, we compute the vector representation of
the parent p as:

p = f

(
W

[
c1
c2

])
, (2)

where f is an element-wise nonlinearity (such as a
sigmoid function or a tanh function), W ∈ Rd×2d

is the parameter to be learned, and the input vec-
tors c1 and c2 have been concatenated. Note that
the parent vector p must be of the same dimension
as each of its children to be recursively compati-
ble. Moreover, each parent vector p is given the

same softmax classifier y = softmax(V p), (where
V ∈ Rn×d with n denoting the number of class
labels) to compute its label probabilities.

With this understanding of a basic RNN in
mind, we now examine (Socher et al., 2013).
Here, a more sophisticated RNN architecture is
introduced, known as the Recursive Neural Ten-
sor Network (RNTN). The motivation behind the
RNTN is that in the standard RNN, the input vec-
tors only interact through the nonlinearity f as
in equation (2); instead, a more direct interac-
tion among the input vectors might be more de-
sirable. Briefly, the RNTN architecture is as fol-
lows: Given the two vector representations of the
children, denoted by c1 ∈ Rd and c2 ∈ Rd, we
compute the vector representation of the parent p
as:

p = f

([
c1
c2

]T
V [1:d]

[
c1
c2

]
+W

[
c1
c2

])
, (3)

where V [1:d] ∈ R2d×2d×d is a tensor, and W is
as defined in equation (2). Observe that the RNN
is a special case of the RNTN when V is set to
0. The authors claim that the RNTN model is ad-
vantageous because it can directly relate the in-
put vectors since each slice V [i] ∈ R2d×2d (for
i = 1, . . . , d) of the tensor is essentially perform-
ing a composition. In fact, when it is compared to
RNNs (as well as to Naive Bayes, bi-gram Naive
Bayes, and SVM), the RNTN obtains the high-
est performance with 45.7% test-set accuracy on
the Stanford Sentiment Treebank when predicting
fine-grained sentiment for just the root node.

The question that naturally arises is whether re-
cursive structure is necessary for improved perfor-
mance. Recent work by (Li et al., 2015) tries to
better understand when and why recursive models
can outperform simpler models. Their approach
is to benchmark recursive neural models against
recurrent models (specifically, LSTM and simple
recurrent models) on four tasks: discourse pars-
ing; semantic relation extraction; sentiment classi-
fication at the sentence level and phrase level; and
matching questions to answer phrases. They found
that for semantic relation extraction where long-
distance semantic dependencies play a role, recur-
sive models offer a significant advantage. How-
ever, they also find that one way to improve se-
quential recurrent models to achieve equivalent
(or close to equivalent) performance would be to
break long sentences on punctuation into a se-

ries of clause-like units, work on these clauses
separately, and then finally join these clauses to-
gether. This suggests that one of the reasons tree-
structured models help is by breaking down long
sentences into manageable units. Moreover, it ap-
pears that there is potential for a recurrent model to
learn these semantic dependencies from the data,
indicating that the explicit recursive structure is
unnecessary.

Further evidence that sequential recurrent mod-
els do have the potential to be developed to more
effectively deal with recursive structure is pro-
vided by (Karpathy et al., 2016). They find that
for the task of character level language modeling
(where given a sequence of characters, the net-
work is trained to predict the next character in the
sequence), the memory cells of the LSTM are in-
terpretable and can keep track of long-range de-
pendencies including brackets, quotes, and line
lengths. They also find that scaling up the number
of parameters in the LSTM by a factor of 26 only
provides limited gains in error rate, in turn sug-
gesting that it may be necessary to develop new ar-
chitectural improvements instead of simply adding
more parameters.

3 Models and Approach

3.1 Data

We will predict the sentiment of sentences sam-
pled from movie reviews; specifically, we use
the Stanford Sentiment Treebank (Socher et al.,
2013). We concentrate on the fine-grained root
classification subtask over five classes (very nega-
tive, negative, neutral, positive, and very positive)
with the train/dev/test split of 8544/1101/2210.
The reason why we concentrate on the fine-
grained subtask is that there are fewer examples
for the binary subtask since neutral sentences are
excluded, and to us, it would appear that compo-
sitionality plays a more important role in the fine-
grained case than in the binary case.

Our cost function will be the standard cross-
entropy loss:

CE(y, ŷ) = −
5∑

i=1

yi log(ŷi),

where y ∈ R5 is the one-hot label vector, and
ŷ ∈ R5 is the predicted probability vector for all
classes (which in our case represent our 5 senti-
ment classes).

We will now describe the four models we will
use in this paper. In what follows, we will have
W∗ and U∗ to denote weight matrices and b∗ to
denote biases.

3.2 LSTM
Our baseline recurrent model is the LSTM. A typ-
ical problem with the standard recurrent network
as formulated in (1) is that during training, com-
ponents of the gradient vector can grow or decay
exponentially over long sequences (Bengio et al.,
1994). As a result, this problem of exploding or
vanishing gradients makes it notoriously difficult
to train standard recurrent networks to learn long-
distance correlations.

The LSTM, introduced by (Hochreiter and
Schmidhuber, 1997), addresses this issue by us-
ing a more sophisticated activation function com-
prised of gating units that preserve the state over
long periods of time. At each timestep t, the
LSTM is a collection of vectors, consisting of an
input gate it ∈ [0, 1]d, a forget gate ft ∈ [0, 1]d,
an output gate ot ∈ [0, 1]d, a memory cell ct ∈ Rd,
candidate memory cell c̃t ∈ Rd, and a hidden state
ht ∈ Rd. The LSTM update equations are as fol-
lows:

ft = σ(Wfxt + Ufht−1 + bf)

it = σ(Wixt + Uiht−1 + bi)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ot = σ(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh(ct),

(4)

where ◦ denotes the usual Hadamard (element-
wise) product.

3.3 Bidirectional LSTM
A common variant of the traditional LSTM is the
Bidirectional LSTM (Graves et al., 2013), which
is comprised of two LSTMs that are run in oppo-
site directions, in order to potentially capture past
and future information. At each timestep, the hid-
den state of the Bidirectional LSTM is the con-
catenation of the hidden state of the LSTM run
on the input sequence and the hidden state of the
LSTM run on the reverse of the input sequence.

3.4 LSTM with Global Attention
We now begin our discussion of augmenting the
LSTM with a neural attention mechanism.

Our motivation for pursuing this approach was

based on the observation of (Karpathy et al., 2016)
that a common error they found involved sen-
tences that required dynamic memory. As an ex-
ample, they considered the string “Jon yelled at
Mary but Mary couldn’t hear him”. They found
that if the LSTM fails to predict the characters
of the first occurrence of “Mary”, then it will
also fail to predict the same characters of the sec-
ond occurrence. However, one could imagine that
a sequential recurrent network which uses some
learned weighting on previously seen characters
could learn that the presence of the first “Mary”
would make the second occurrence more likely.
Therefore, we wanted to augment a recurrent net-
work with neural attention, whereby the model
may learn that the presence of a given word can
potentially make the presence of another more or
less likely.

Our first use of neural attention is based on the
global attentional model proposed by (Luong et
al., 2015). Since we are predicting the sentiment
at the end of the sentence (the last timestep, where
each timestep corresponds to a token), then our ap-
proach is to compute the context vector cT only up
to the last timestep T , where cT is defined as:

cT =
T∑
t=1

atht, (5)

where at ∈ R is defined to be

at = softmax(Waht). (6)

To produce our sentiment prediction ŷ ∈ R5, we
use our context vector cT and the hidden state at
the last timestep hT to produce the attentional hid-
den state h̃T , defined as:

h̃T = tanh
(
Wc

[
cT
hT

])
, (7)

from which our sentiment prediction ŷ is given by:

ŷ = softmax(Wph̃T). (8)

3.5 LSTM with Recurrent Attention
Our second approach to using neural attention will
be to extend the above notion of global attention,
especially the production of the attentional hidden
state in (7), by adding additional recurrence to the
attention mechanism. Here, we gain inspiration
from the recent introduction of deep attention fu-
sion by (Cheng et al., 2016), where they replace

the tanh operation in (7) by an LSTM-like atten-
tional layer. Deep attention fusion was originally
developed for neural machine translation, so we
will adapt it to the setting of sentiment analysis
by not using inter-attention (attention between the
source and target sequences in the translation task)
and instead primarily re-encode the sentence and
adaptively transfer its representation using gating
units as in the LSTM. We proceed as follows to
accomplish this. Let ht and mt be the hidden state
and the memory cell state of the LSTM at timestep
t, respectively. Then, for each t = 1, . . . , T , let[

h̃t
m̃t

]
=

t∑
j=1

αt
j

[
hj
mj

]
, (9)

where αt
j ∈ R, such that

αt
j = softmax

(
Wa

[
hj
mj

])
.

Next, we adaptively transfer the representation

xt =

[
h̃t
m̃t

]
through the following gating units:

rt = σ
(
Wrh̃t + br

)
kt = ft ◦ kt−1 + it ◦ k̃t + rt ◦ m̃t

st = ot ◦ tanh(kt),

(10)

where ft, it, k̃t, and ot correspond exactly to the
forget gate, input gate, candidate activation, and
output gate in a traditional LSTM, defined as fol-
lows:

ft = σ(Wfxt + Ufst−1 + bf)

it = σ(Wixt + Uist−1 + bi)

k̃t = tanh(Wkxt + Ukst−1 + bk)

ot = σ(Woxt + Uost−1 + bo).

(11)

The final stage of our recurrent attention mech-
anism involves passing sT , where T is the last
timestep, through a highway network. A highway
network (Srivastava et al., 2015) is a generaliza-
tion of an affine transformation that uses gating
units in order to regulate information flow, defined
as follows for a given input x:

H = H(WHx+ bH)

T = T (WTx+ bT)

C = C(WCx+ bC)

y = H ◦ T + x ◦ C.

where H , T , and C are non-linear activation func-
tions, T is called the transform gate and C is called
the carry gate, where usually C = 1 − T. In our
implementation, our input into the highway net-
work was sT , and we used the following equations
for our highway network:

H =WHx+ bH

T = σ(WTx+ bT)

ŝT = H ◦ T + sT ◦ (1− T).
(12)

As suggested in (Srivastava et al., 2015), we ini-
tialized the transform gate bias bT to −2 in order
to bias the network initially towards carry behav-
ior.

We found that using the above highway net-
work in (12) on the last timestep sT improved
our performance. Finally, our sentiment predic-
tion ŷ ∈ R5 is computed using ŝT , the output of
the highway network, as follows:

ŷ = softmax(WpŝT). (13)

4 Experiments

4.1 Hyperparameters and Training Details
We used 300-dimensional 840B Glove vectors
(Pennington et al., 2014) to initialize our word
representations, and we fine-tune the Glove repre-
sentations during training since these vectors were
not originally trained to capture sentiment1. Out
of vocabulary words were initialized randomly us-
ing Gaussian samples with mean 0 and variance
1. We also used the Keras (Chollet, 2015) and
Theano (Bastien et al., 2012) software libraries as
our framework for implementing our models.

For the LSTM, the best hyperparameters we
found are Dropout (Srivastava et al., 2014) of
0.2 between the Glove embedding layer and the
LSTM layer (which has 150-dimensional hidden
states), an L2 regularization penalty of 0.01, and
Adagrad (Duchi et al., 2011) (with the default
learning rate of 0.01) as our optimizer, with a
minibatch size of 128.

For the Bidirectional LSTM, the best hyper-
parameters we found are Dropout of 0.3 be-
tween the Glove embedding layer and each of the
two LSTMs (which have 300-dimensional hidden
states), an L2 regularization penalty of 0.01, and

1They were in fact trained on 840 billion tokens of Com-
mon Crawl data, as in http://nlp.stanford.edu/
projects/glove/.

Adagrad (with the default learning rate of 0.01) as
our optimizer, with a minibatch size of 300. Addi-
tionally, for each LSTM, we have a Dropout level
of 0.3 between each recurrent connection, as sug-
gested in recent work by (Gal, 2015) that it is an
effective regularizer for recurrent networks.

For the LSTM with global attention, we use a
Dropout level of 0.3 between the Glove embed-
ding layer and the LSTM layer (which has 300-
dimensional hidden states), an L2 regularization
penalty of 0.01, and Adagrad (with the default
learning rate of 0.01) as our optimizer, with a
minibatch size of 300. Moreover, the attentional
hidden state defined in (7) is 25-dimensional. Ad-
ditionally, we have a Dropout level of 0.3 between
each recurrent connection for the LSTM layer.

Finally, for the LSTM with recurrent attention,
we use a Dropout level of 0.15 between the Glove
embedding layer and the LSTM layer (which has
300-dimensional hidden states), an L2 regulariza-
tion penalty of 0.01, and a variant of Adagrad
known as Adadelta (Zeiler, 2012) (with the default
learning rate of 1.0) as our optimizer, with a mini-
batch size of 300. Additionally, we have a Dropout
of 0.25 between each recurrent connection for the
LSTM layer, and a Dropout level of 0.3 between
each recurrent connection in the adaptive transfer
layer described in (10).

In Figure 1, we have plotted the accuracy per
epoch during training on both the train set and the
dev set, for each of the four models. We trained
our models on a Titan X GPU, and also used early
stopping if the dev set accuracy did not improve
after 10 epochs. To demonstrate the ease of train-
ing recurrent models versus recursive models, all
of our models took 20 minutes or less to train,
and started to overfit either at or before 20 epochs
of training. For time comparison, we also imple-
mented the RNTN as described in (Socher et al.,
2013), and found that the RNTN was difficult to
port to Theano (in order to train it on a GPU)
and therefore we trained it on a laptop CPU in-
stead, and it ultimately took around 4-5 hours to
train, consistent with the training time reported in
(Socher et al., 2013). Recent work by (Bowman
et al., 2016) develops a shift-reduce model which
supports batched computing in recursive models,
though it is still much more complicated than re-
current networks.

Figure 1: Accuracy per epoch on train set (blue) and dev set (green).

Model Test-Set Accuracy
LSTM 45.7% (0.0113)
Bidirectional LSTM 46.4% (0.0175)
LSTM+global attn. 45.3% (0.0047)
LSTM+recurrent attn. 47.4% (0.0031)

Table 1: Accuracy for the fine-grained (5 class)
predictions at the sentence level (root), with stan-
dard deviations in parentheses.

4.2 Results

Our results are summarized in Table 1. Although
we were not able to replicate the 49.8% perfor-
mance of a Bidirectional LSTM as reported in (Li
et al., 2015), the relative improvement between
our best performing model, the LSTM with re-
current attention, and the Bidirectional LSTM, ap-
pears to be statistically notable, with a two-tailed
p-value of 0.04555.

Furthermore, our simplest model, the LSTM,
can already achieve the same test set performance
of 45.7% as the RNTN, indicating perhaps that
the sophisticated gating mechanisms in the LSTM
may be helpful in learning some relevant compo-
sitional structure in the data.

Interestingly, global attention does not appear
to be useful, and in fact appears to degrade per-
formance when compared to our baseline LSTM.
One explanation could be that since we are pre-

dicting only at the last timestep, then we are only
creating one context vector cT , when in fact for
many neural machine translation tasks, a context
vector is created at every timestep and is used by
the target to compute proper alignment. Thus, it
appears that a single context vector that summa-
rizes the weighting at every time point does not
appear sufficient.

The recurrent attention model, on the other
hand, effectively makes use of every timestep as
seen in (9), and replaces the single tanh operation
in (7) of the global attention model by the adap-
tive transfer layer in (10). We found that what
provided the additional performance improvement
over the Bidirectional LSTM was the inclusion of
a highway network after the output of the adaptive
transfer layer but prior to the final softmax layer,
as previously noted in §3.5. A potential reason for
the usefulness of a highway network in an atten-
tion mechanism could be that the transform gate
T in (12) additionally allows for selectively learn-
ing portions of the adaptive transfer layer’s output
that are most relevant for the final sentiment pre-
diction.

5 Analysis

To better understand the reasons behind the
performance results in Table 1, we plot confusion
matrices for all four models in Figure 2. It is
important to note that all of the models appear to

Figure 2: Confusion matrices on the test set. 0: “very negative”, 1: “negative”, 2: “neutral”, 3: “positive”,
4: “very positive”.

predict the “very negative” sentiment really well,
which is not entirely surprising since the Stanford
Sentiment Treebank consists of movie reviews,
which tend to be negative overall. However,
despite this, the LSTM with recurrent attention
appears to perform consistently well across the
other sentiment classes, with the exception of the
“very positive” class, which all the models seem
to do poorly on, providing some evidence that
the recurrent attention mechanism better allows
the LSTM to exploit compositionality in the data.
Moreover, we can see somewhat more closely the
effect global attention has, which seems to help
the LSTM only slightly better predict the very
negative, neutral, and positive sentiment classes;
however, performance on the remaining sentiment
classes is noticeably worse, thereby resulting
in overall decreased performance compared to
the LSTM. The Bidirectional LSTM appears to
predict the very negative, neutral, and positive

sentiment classes better than the LSTM, and
only slightly underperforms on the remaining
sentiment classes, thereby resulting in overall
higher performance than the LSTM.

Furthermore, all the models appear to mostly
misclassify the very positive sentiment to be
very negative, indicating that the models are not
perfectly capturing all compositional aspects of
sentiment whereby the sentiment could drastically
shift. In fact, the LSTM with recurrent attention
appears to confuse the two classes more than the
remaining models. Another confusion among all
the models is finer grained in that they appear
to misclassify “negative” sentiment as “very
negative”; however, the LSTM with recurrent
attention seems to misclassify this finer grained
distinction less than the other models.

To better understand the strengths and the
weaknesses of the recurrent attention mechanism,
we examined sentences that the LSTM with

Sentence True Label
the additional storyline is interesting and entertaining,
but it doesn’t have the same magical quality as the beginning of the story. negative
though everything might be literate and smart, it never took off and always seemed static. very negative
despite what anyone believes about the goal of its makers, the show represents
a spectacular piece of theater, and there’s no denying the talent of the creative
forces behind it. positive

Table 2: Sentences that the LSTM with recurrent attention classifies correctly but the remaining models
misclassify.

Sentence True Label Pred Label
a strong first quarter, slightly less so second quarter, and average second half. negative very negative
a journey through memory, a celebration of living, and a sobering rumination
on fatality, classism, and ignorance. positive neutral
the editing is chaotic, the photography grainy and badly focused,
the writing unintentionally hilarious, the direction unfocused,
the performances as wooden. very negative very positive

Table 3: Sentences that the LSTM with recurrent attention misclassifies but the remaining models classify
correctly. “Pred label” refers to the LSTM with recurrent attention’s sentiment prediction.

recurrent attention classifies correctly but every
other model misclassifies the sentiment (Table 2),
and similarly, the sentences that the LSTM with
recurrent attention misclassifies but every other
model classifies correctly (Table 3).

As can be seen from Table 2, the LSTM with
recurrent attention is able to capture contrastive
conjunction, which are sentences of the form “X
but Y” (as in the first sentence) as well as senti-
ment shifts caused by words like “despite” and
“though” in both positive and negative sentences,
which is the case in the last two sentences. On
the other hand, as can be seen from Table 3, the
LSTM with recurrent attention appears to perform
poorly compared to the other models when the
sentence consists entirely of a list of phrases
(e.g. “X, Y, Z”). One reason could be that if a
list of phrases are separated by commas, then
it is difficult to relate them with attention and
selectively focus on the ones that seem to be most
prominent for determining the output sentiment
than if we had a contrastive conjunction or a
sentiment shifter to focus on.

6 Conclusions

We demonstrated a new type of recurrent atten-
tion model and demonstrated that LSTMs with re-
current attention can outperform the RNTN, a re-

cursive model, on the task of fine-grained senti-
ment analysis. The motivation behind our recur-
rent attention model is that it provides a way of
adaptively incorporating the LSTM’s response at
every timestep, providing a viable alternative to
global attention, which we found was not as useful
for this task. Moreover, our experiments demon-
strated that recurrent attention is able to capture
effective changes in sentiment that occur within a
sentence. On the other hand, lists of phrases ap-
pear to be a noticeable shortcoming of this model.

Future work could involve potentially using our
recurrent attention model with a modified LSTM
that has its own internal attention mechanism,
such as the LSTMN (Long Short-Term Mem-
ory Network) recently proposed by (Cheng et al.,
2016), as a possible solution to overcoming the
current shortcomings with lists of phrases. It
would also be interesting to apply our proposed re-
current attention mechanism to the Stanford NLI
corpus (Bowman et al., 2015), which consists of
a collection of English sentence pairs manually
labeled for entailment, contradiction, and neu-
tral, supporting natural language inference, where
compositionality may play a larger role.

Acknowledgments

We would like to thank Jiwei Li for his helpful
advice and comments.

References
Dzmitry Bahdanau, KyungHyun Cho, and Yoshua

Bengio. 2015. “Neural Machine Translation by
Jointly Learning to Align and Translate”. Inter-
national Conference on Learning Representations
2015.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. “Theano: new features and speed im-
provements”. Presented at Advances in Neural Infor-
mation Processing Systems (NIPS) Workshop 2012.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. “Learning long-term dependencies with gradi-
ent descent is difficult”. IEEE Transactions on Neu-
ral Networks, 5(2):157-166.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
“Long short-term memory-networks for machine
reading”. arXiv:1601.06733.

François Chollet. 2015. “Keras: Deep Learning library
for Theano and TensorFlow”. https://github.
com/fchollet/keras/.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. “A large an-
notated corpus for learning natural language infer-
ence”. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing.

Samuel R. Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D. Manning,
and Christopher Potts. 2016. “A Fast Unified
Model for Parsing and Sentence Understanding”.
arXiv:1603.06021.

John Duchi, Elad Hazan, and Yoram Singer. “Adap-
tive subgradient methods for online learning and
stochastic optimization”. 2011. The Journal of Ma-
chine Learning Research, 12: 2121-2159.

Jeffrey L. Elman. 1990. “Finding structure in time”.
Cognitive science, 14: 179-211.

Alex Graves, Navdeep Jaitly, and A-R Mohamed.
2013. “Hybrid speech recognition with deep bidi-
rectional LSTM”. In IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU):
273-278.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. “Long
short-term memory”. Neural Computation 9(8):
1735-1780.

Yarin Gal. 2015. “A Theoretically Grounded Appli-
cation of Dropout in Recurrent Neural Networks”.
arXiv:1512.05287.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2016.
“Visualizing and understanding recurrent neural net-
works”. International Conference on Learning Rep-
resentations 2016.

Jiwei Li, Minh-Thang Luong, Dan Jurafsky, and Ed-
uard Hovy. 2015. “When Are Tree Structures Nec-
essary for Deep Learning of Representations?”. In
Proceedings of the 2015 Conference on Empirical
Methods on Natural Language Processing.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. “Effective Approaches to Attention-
based Neural Machine Translation”. In Proceedings
of the 2015 Conference on Empirical Methods on
Natural Language Processing.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. “Linguistic regularities in continuous space
word representations”. In NAACL HLT: 746-751.

Jeffrey Pennington, Richard Socher, and Christopher
D. Manning. “Glove: Global vectors for word
representation”. In Proceedings of the 2014 Con-
ference on Empirical Methods on Natural Lan-
guage Processing. http://nlp.stanford.
edu/projects/glove/.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng,
and Christopher D. Manning. 2011. “Parsing Nat-
ural Scenes and Natural Language with Recursive
Neural Networks”. International Conference on Ma-
chine Learning 2011.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. “Recursive Deep Mod-
els for Semantic Compositionality Over a Sentiment
Treebank”. International Conference on Machine
Learning 2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
“Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In Journal of Machine
Learning Research, 15: 1929-1958.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. “Training Very Deep Net-
works”. In Advances in Neural Information Process-
ing Systems (NIPS) 2015.

Peter D. Turney and Patrick Pantel. 2010. “From fre-
quency to meaning: Vector space models of seman-
tics”. Journal of Artificial Intelligence Research 37:
141-188.

Matthew D. Zeiler. 2012. “ADADELTA: An adaptive
learning rate method”. arXiv:1212.5701.

