CARMA: A Deep Reinforcement Learning Approach
to Autonomous Driving

Matt Vitelli Aran Nayebi
mvitelli@stanford.edu anayebi@stanford.edu

Abstract

We created a deep QQ-network (DQN) agent to perform the task of autonomous car
driving from raw sensory inputs. We evaluated our agent’s performance against
several standard agents in a racing simulation environment. Our results indicate
that our DQN agent is capable of successfully controlling a car to navigate around
a simulation environment.

1 Introduction

Controlling an agent from high dimensional sensory inputs is a key challenge for any reinforcement
learning application. One approach to this problem is to use hand-crafted features in conjunction
with a linear parametrization of the policy or value function. The downside of this approach therefore
is that success is strongly dependent on the quality of these feature representations. Neural networks
offer one such solution, as they are able to learn salient features from raw sensory inputs. Mnih et al.
[6] brought the approach of combining deep learning with reinforcement learning to center-stage by
demonstrating a convolutional neural network (CNN), trained with a variant of ()-learning, that can
learn successful control policies from raw video data in order to play Atari. We wanted to scale up
this deep -learning approach to the more challenging reinforcement learning problem of driving a
car autonomously in a 3D simulation environment.

2 Prior Work

The task of driving a car autonomously around a race track was previously approached from the
perspective of neuroevolution by Koutnik et al. [4] to control a car in the TORCS racing simula-
tion environment using vision from the driver’s perspective. In order to address the issue of high
dimensional inputs, Koutnik et al. [4] first transformed the visual input into a compact feature vector
using a deep, max pooling convolutional neural network (MPCNN) that was evolved to discriminate
between differing images. Next, this feature vector was used to separately evolve an extremely small
recurrent neural network (RNN) controller, which would control the car’s movements. Instead of
using neuroevolution, we will use a neural network for state estimation, in conjunction with a more
traditional reinforcement learning algorithm such as Q)-learning.

3 Problem Formulation

Our problem is formulated as a Markov Decision Process (MDP) in which at each timestep ¢, an
agent observes a state s; and performs an action a; that leads it to a new state s, and observes a
corresponding reward r; = R(s;, a;). Throughout the paper, we only make use of model-free rein-
forcement learning approaches and thus do not assume a transition model T'(s¢, at, St+1) between
the states s; and the next states at s; .

State Space Representation

We formulate our state-space as follows: At each timestep ¢, the agent receives an image I; of the
environment, an estimate of the agent’s speed v, an estimate of the agent’s distance to the center of
the road d;, and an estimate of the angle between the agent’s forward vector and the center of the
road ¢;. Thus, the state s, is represented as the tuple s; = (I, v¢, dt, D).

Oy d[,
vt

|) i
Figure 1: A visualization of s,

Action Space Representation

At each timestep ¢, the agent can perform a discrete action a; = (accy, steer;). We define acc, =
(Brake, DoNothing, Accelerate) and steery = (TurnLeft, DoNothing, TurnRight). Thus,
there are a total of 9 possible actions the car can take at each timestep.

Reward Function

We based the reward function on simple logic for a hand-crafted car controller defined below. The
hand-crafted car controller was designed to safely navigate around a track created in our simulation
environment and the corresponding v,qz, Vbrake, aNd @rhreshold Values were set accordingly so as
to ensure the hand-crafted car controller did not depart from the road at any point along the track.

Algorithm 1 Hand-Crafted Car Controller

1: function GETCARPOLICY(s;) > Returns a policy for the given state.
Vprake < 20 > Defined in meters/second.
3 VUmaz < 18 > Defined in meters/second.
4: Othreshold < 0.05 > Defined in radians.
5: acc < DoNothing
6.
7
8

steer <— DoNothing

if v; > Vprare then
: acc < Brake
9: end if

10: if v; < Ve then

11: acc < Accelerate
12: end if

13: if ¢t > ¢threshold then
14: steer < TurnLeft
15: end if

16: if ¢t < _¢threshold then
17: steer <— TurnRight
18: end if

19: return (acc, steer)

20: end function

Our reward function is defined as follows:

Algorithm 2 Reward Function
1: function REWARD(sy, a;)

2: Vmin < D > Defined in meters/second.
3: Vbrake < 20 > Defined in meters/second.
4: VUmaz < 18 > Defined in meters/second.
5: Othreshold < 0.05 > Defined in radians.
6: reward < 0
7: if v; > Vprake and acc; = Brake then
3: reward < reward + 1
9: end if

10: if v; > Vprare and acc; = Accelerate then

11: reward < reward — 1

12: end if

13: if v; < Ve and ace, = Accelerate then

14: reward < reward + 1

15: end if

16: if v; < Ve and acc; = Brake then

17: reward < reward — 1

18: end if

19: if o1 < —@ihreshorq and steery = TurnRight then

20: reward < reward + 1

21: end if

22: if ¢: < —@ihreshoiq and steery = TurnLeft then

23: reward < reward — 1

24: end if

25: if ¢ > Ginresholg and steery = TurnLe ft then

26: reward < reward + 1

27: end if

28: if o1 > Dinreshoia and steery = TurnRight then

29: reward < reward — 1

30: end if

31: if v4 < vpn and ace; # Accelerate then > Encourage forward motion at low speeds.

32: reward < reward — 1

33: end if

34: return reward

35: end function

It is important to note that while the reward function defined above was designed to reflect the
hand-crafted car controller’s logic, it shares several key differences with the hand-crafted controller.
Namely, an agent is only penalized if its policy is precisely the opposite of what the hand-crafted
controller would do. In other words, there is no penalty associated with choosing a DoNothing ac-
tion with both the steer; and acc; terms of a given action. As will be shown in subsequent sections,
this small but important caveat to the reward function allows our agents to exploit the discounted
cumulative rewards inherent to the reward structure and achieve higher average cumulative rewards
than the hand-crafted controller was capable of achieving.

4 Modeling Approach

We experimented with various agents, ranging from a discrete agent to a variety of model architec-
tures for the deep QQ-network agents.

Discrete ()-learning Agent

Our discrete agent utilizes (-learning on a discretized version of the state space. For this agent, the
states consist of the car’s speed, angle from the center of the track, and distance from the center of

the track. We discretized the state space into 3 angular bins, 4 speed bins, and 4 distance bins for a
total of 48 bins. We distributed the bin values linearly and chose the minimum and maximum bin
values to correspond roughly to the threshold values used in our hand-crafted car controller.

Deep Q-Network Agents
CNN Agent

The CNN agent was provided a 32 x 32 pixel image of the track from the player’s perspective. The
CNN architecture that we found that worked best was 7 layers deep, consisting of 5 consecutive con-
volutional layers and two fully connected (dense) layers. As to our choice of nonlinearity between
each layer, we initially started with the standard ReLU activation, defined as:

relu(z) = max{0, z}.

However, we unfortunately found that this type of activation lead to many neurons being inactive
and therefore unused. As a result, we ended up using leaky ReLLU nonlinearities between each layer,
where a leaky ReL.U activation is defined for any constant @ > 0 as:

zifx >0

leakyrelu() = {ax otherwise.

The motivation behind using leaky ReL.U activations is to allow for a small, non-zero gradient when
the neuron is not active [5]. The architecture of this agent, with the filter sizes specified for each
convolutional layer, is given in Figure 2 below:

3x3
Conv.

Images [~ Tix11 -— S CT::\;. :> C?:v.

Conv. Conv.

Figure 2: Architecture of the CNN agent.

Unfortunately, while we found that the above architecture worked the best among the CNN agents,
it still was not even able to make a complete turn, which motivated us to try an RNN agent.

RNN Agent

The RNN agent was provided as input a vector consisting of the car’s speed, angle from the center
of the track, and distance from the track. We used a Long Short-Term Memory (LSTM) network
[1][2] for the RNN as this type of network utilizes gating units to overcome the issue of vanishing
gradients that are common when training RNNs. The hidden states of the LSTM consisted of 32
units and the LSTM maintained a history of 50 timesteps, which allowed us to train the RNN agent
in real-time. The architecture of this agent is given in Figure 3 below:

Figure 3: Architecture of the RNN agent.

We found that the RNN agent drove smoothly, but could only complete around a half a lap of the
track on average. As a result, this motivated the DQN agent we finally settled on, namely, a hybrid
CNN-RNN architecture.

Hybrid CNN-RNN Agent

The hybrid CNN-RNN agent combined both the CNN and RNN architectures in a novel way. Rather
than having our agent take in a single input, we created a new agent that takes in two inputs. The
first input consists of the 32 x 32 pixel image of the track from the player’s perspective, and the
second input consists of the vector containing the car’s speed, angle from the center of the track,
and distance from the track. Next, the outputs of the CNN agent and the RNN agent (namely,
their feature vectors) are concatenated and passed through two fully connected (dense) layers. The
architecture of this agent is given in Figure 4 below:

Figure 4: Architecture of the hybrid CNN-RNN agent.

5 Deep Q-Network Training

We found that many practical issues become apparent when training DQNs and there are a variety
of techniques that can be used to accelerate the DQN learning process. We have broken up the major
steps into several sections outlined below.

Learning Parameters

We found that using Adam as the underlying gradient-based optimization technique tended to work
well. Adam is a recently published alternative to adapting the learning rate in gradient-based op-
timization techniques and was first introduced in Kingma and Ba [3]. Apart from this, we do not
use any forms of regularization in our cost function and only used the standard Lo loss between

our DQN’s predicted Q-values Qg, (S:, a¢) and the estimated r + vy max, Qo,_, (St+1, a/) from the

DQN’s target network. We found that optimizing the DQN for 4 epochs before updating the target
network @)y, , tended to provide a good trade-off between fast convergence and numerical stability.

Reservoir Sampling Experience Replays

During training, we keep around a buffer of size K consisting of K different tuples of (s, ay, 74,
S¢+1) sampled throughout the training procedure. We use a standard reservoir sampling procedure
to replace these tuples over the course of training. This ensures that all samples over the course
of training are sampled uniformly at random and helps improve stability over the DQN learning
process. After K samples have been observed since the last (), , update, we fit the current network
using the standard Lo loss discussed above. In practice, we found that setting K = 2048 samples
tended to result in a nice balance between updating the DQN reasonably often, while allowing the
DQN to observe sufficiently many new samples using its current best policy.

Randomized Restarts within the Simulation Environment

One common problem we ran into during training was that the DQN agents tended to overfit to the
first initial segments of the racing track. This is largely due to the fact that by default, whenever
the racing simulator is restarted, the racing cars start at the same starting positions and orientations
defined in the track. To combat this problem, we modified our simulation environment so that
whenever the car was derailed from the track (and hence entered a failure state), the car would be
placed at some random position and orientation along the track. This simple modification greatly
improved the convergence rate of the DQN agents and helped combat over-fitting policies to best
match the start of the track.

Supervised Policy Learning during Early Convergence

Initially, we trained our DQN agents using the standard epsilon greedy procedure outlined in Mnih
et al. [6]. However, we found in practice that this often lead to convergence to sub-optimal policies
- particularly when navigating the car around in 3D space using image-based features. Instead, we
experimented with implementing a simple extension to the learning procedure by introducing the
concept of an oracle agent Oggen: that can be queried for best actions af at timestep t. The basic
concept is simple: before ?,,,, timesteps, the DQN always follows the oracle’s actions af using
an epsilon-greedy strategy. After ¢,,,, timesteps, the DQN simply follows its own actions using
an epsilon-greedy strategy. The motivation for doing this is that it greatly accelerates the DQN’s
convergence and empirically, we found that our DQN agents tended to produce sub-optimal policies
without the presence of an oracle compared to using an oracle to shape an initial policy. In practice,
we found that setting ¢,,,, = 40 epochs tended to produce reasonable results.

6 System Design

Simulation Environment

We used Vdrift (http://vdrift.net/) as the simulation environment for our autonomous ve-
hicle. Vdrift is an open-source, cross-platform racing simulator written in C++. We were able
to make extensive modifications to the simulator including implementing GPU-accelerated down-
sampling of the frame-buffer, disabling the in-game graphics user interface (GUI), computing the
distance and angular terms with respect to the road, and integrating an inter-process communi-
cation (IPC) system to publish both the states s; and apply the corresponding actions a; pro-
duced by our agents. We made use of Nanomsg (http://nanomsg.org/), an open-source,
cross-platform messaging system for the IPC implementation and used Google Protocol Buffers
(https://developers.google.com/protocol-buffers/) to handle serialization be-
tween Vdrift and our agents.

Agent Implementations

Our agents were created in Python using the Keras deep learning framework (http://keras.
io/), a popular library that supports modular construction of neural networks and serves as a wrap-
per to several back-end tensor manipulation systems such as Theano and TensorFlow. Our software

http://vdrift.net/
http://nanomsg.org/
https://developers.google.com/protocol-buffers/
http://keras.io/
http://keras.io/

system was designed so that agents could seamlessly connect to Vdrift and publish commands as
needed. In certain circumstances, the car can get derailed from the racing track, so our agents are
also able to reset the simulator if needed. We trained our agents using CUDA-based GPU acceler-
ation on commodity hardware. All of the experiments below were run on a Macbook Pro with an
Nvidia GeForce GT 750M GPU. At the time of publication, this hardware is relatively modest by
most standards and thus is a testament to what relatively shallow DQNs can achieve with limited
computational resources.

7 Experiments & Results

Quantitative Evaluation

We compared our final hybrid CNN-RNN DQN agent against our discrete ()-learning agent, the
hand-crafted car controller, and a greedy agent that sought to maximize its immediate reward at
each timestep. All agents used the same reward function defined in the Problem Formulation section
above. We compared the agents based on three criteria: 1) The average rewards achieved by each
agent over the course of its run, 2) the average speed achieved by each agent over the course of its
run, and 3) the maximum speed achieved by each agent over the course of its run. All tests were
performed on the Vdrift Ruddskogen track and both the hybrid CNN-RNN and discrete)-learning
agents were trained until convergence before measuring the three criteria. Our findings are listed in
the table below.

Average Reward | Average Speed | Max Speed

Hand-Crafted Controller 0.542 17.65 m/s 18.77 m/s
Greedy Agent 1.416 17.53 m/s 18.16 m/s
Discrete Agent 0.635 18.71 m/s 20.21 m/s
DQN Agent 0.915 17.57 m/s 24.71 m/s

Table 1: Performance Comparison between the Different Agents

Several interesting patterns become clear when observing the criteria in the table. First, the hand-
crafted controller receives a lower average reward compared to the other agents, but exhibits com-
parable average speeds to the other agents. This demonstrates that while the reward function is
based on the hand-crafted controller’s logic, it is not a perfect translation of the controller’s logic
and allows for some freedom during the learning process. In contrast, we see that the greedy agent
consistently outperforms all of the other agents in terms of its average reward, but under performs
all other agents in terms of its average and maximum speeds. The reason behind this discrepancy
is that the greedy agent tends to seek out high rewards by both accelerating and turning more often.
Turning the car in the simulation will cause more friction to the car and hence decreases the car’s
overall speed.

The DQN agent exhibits the second highest rewards and achieves the highest maximum speed, but
has the second lowest average speed. Qualitatively, it seems as though the DQN has converged to
a policy where it often accelerates to a point and then uses the Do Nothing action for acceleration
to maintain its speed without being penalized. The DQN controller almost never performs braking
actions. This tends to lead to great performance in terms of speed, but causes the agent to be more
unstable than the other three agents and as a result, it tends to crash more often. Due to the fact that
it crashes more often, the average speed tends to be lower as it restarts from a rest state after each
crash.

Interestingly enough, our strongest agent seemed to be the discrete (Q-learning agent. While the
agent’s average reward was much lower than both the greedy agent and the DQN agent, its average
speeds were much higher and its maximum speed was still competitive with the DQN’s maximum
speed. Qualitatively, the discrete ()-learning agent maintains a nice compromise between stability
and speed and generally only performs braking actions during sharp turns.

Summary

Both reinforcement learning methods exhibited their strengths in navigating autonomous vehicles.
While our DQN agent ultimately exhibited more unstable behavior than the traditional discrete
agent, we were able to successfully train a DQN to reliably drive around the race track. Both meth-
ods outperform the hand designed controller in both their average cumulative rewards and maximum
driving speeds.

8 Conclusion

This project has demonstrated the effectiveness of navigating autonomous vehicles using reinforce-
ment learning methods. We have shown that Deep ()-Networks can be an effective means of con-
trolling a vehicle directly from high-dimensional sensory inputs, and we used a novel combination
of CNN and RNN networks to achieve this. While currently it seems as though a well-designed,
low-dimensional discrete state-space agent is able to more stably control a car compared to a more
complex DQN agent, we believe our work could be extended in several ways. Namely, it would be
nice to find a better alternative of defining our reward function that still maintains the careful bal-
ance between maximizing speed while guaranteeing car stability. Similarly, it would be interesting
to generalize our work to continuous action spaces. Despite these limitations, we are still proud that
our agents were able to successfully control a car without any explicit notion of the car’s underlying
dynamics.

References

[1] D. Eck and J. Schmidhuber. “Learning the long-term structure of the blues”. ICANN (2002): 284-289.
[2] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. Neural Computation 9 (1997): 1735-1780.

[3] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. 3rd International Conference for
Learning Representations, San Diego, 2015. http://arxiv.org/abs/1412.6980.

[4] J. Koutnik, J. Schmidhuber, and F. Gomez. “Evolving Deep Unsupervised Convolutional Networks for
Vision-Based Reinforcement Learning”. Proceedings of the 2014 Annual Conference on Genetic and Evolu-
tionary Computation. 541-548.

[5S] A. L. Maas, A. Y. Hannun, A. Y. Ng. “Rectifier Nonlinearities Improve Neural Network Acoustic Models”.
ICML 2013.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. “Playing
Atari with Deep Reinforcement Learning”. Nature 518 (2015): 529-533.

http://arxiv.org/abs/1412.6980

	Introduction
	Prior Work
	Problem Formulation
	Modeling Approach
	Deep Q-Network Training
	System Design
	Experiments & Results
	Conclusion

