

AAAI-26 / IAAI-26 / EAAI-26

Intrinsic Barriers and Practical Pathways for Human-AI Alignment: An Agreement-Based Complexity Analysis

Aran Nayebi

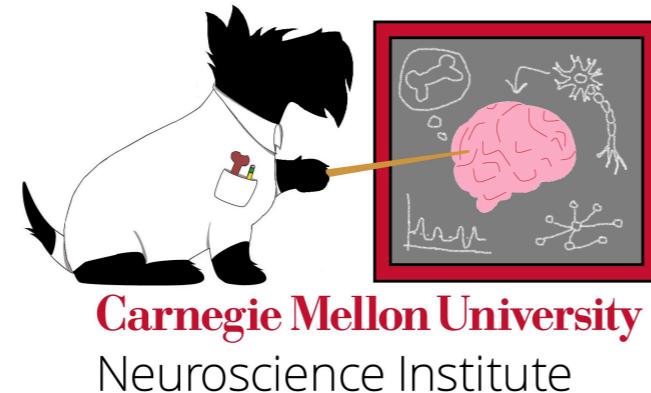
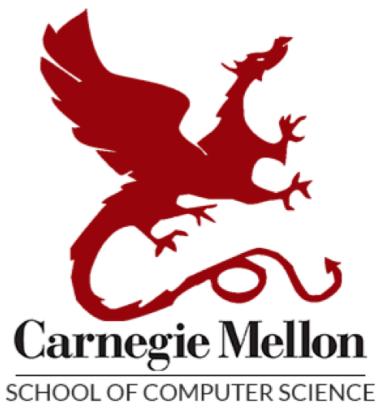
Assistant Professor

Machine Learning Department

Neuroscience Institute (core faculty), Robotics Institute (by courtesy)

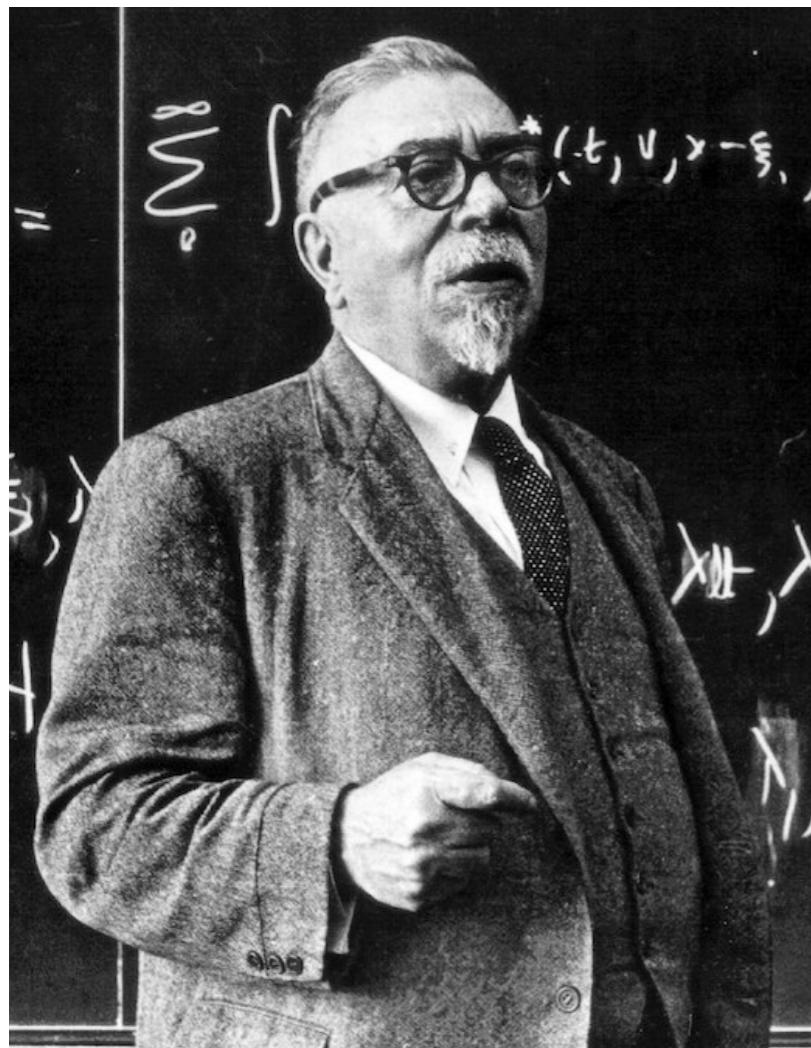
AAAI 2026, Special Track on AI Alignment Oral (AIA-196)

2026.01.25



Alignment Problem

How can we get AI systems to act in accordance with our values?



Some Moral and Technical Consequences of Automation

As machines **learn** they may develop unforeseen
strategies at rates that baffle their programmers.

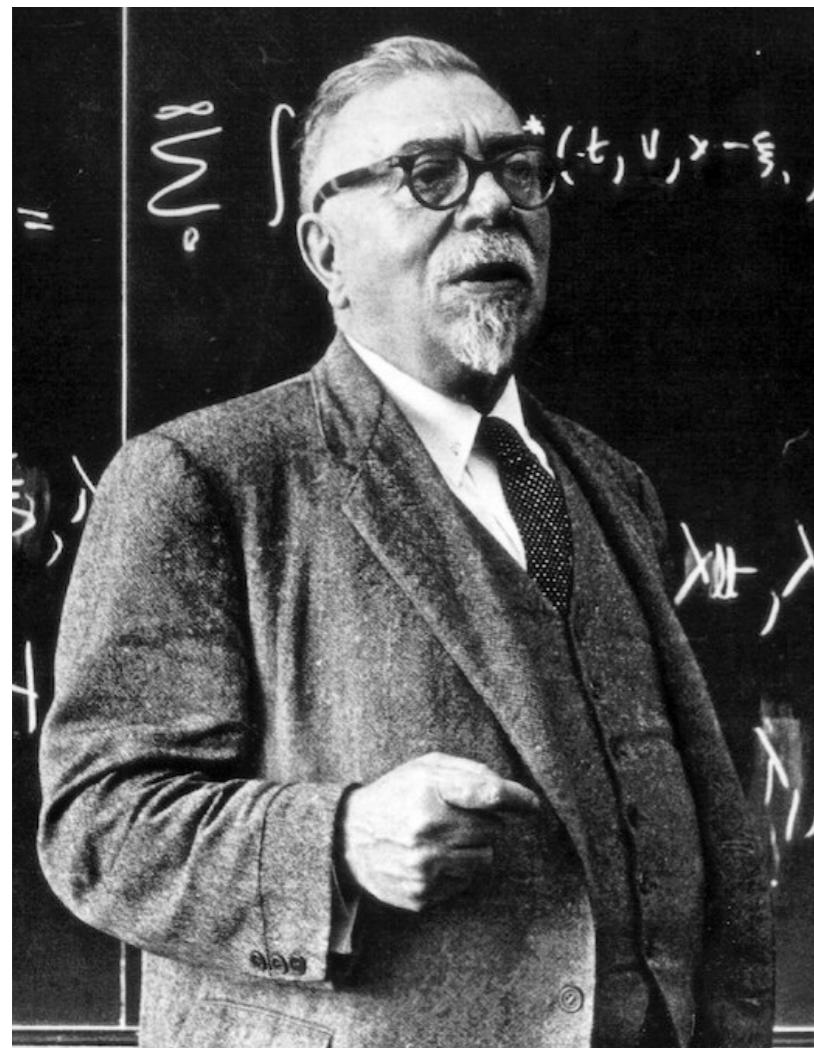
Norbert Wiener

6 MAY 1960

Alignment Problems

How can we get AI systems to act in accordance with our values?

What should those values even *be*?



Some Moral and Technical Consequences of Automation

As machines **learn** they may develop unforeseen strategies at rates that baffle their programmers.

Norbert Wiener

6 MAY 1960

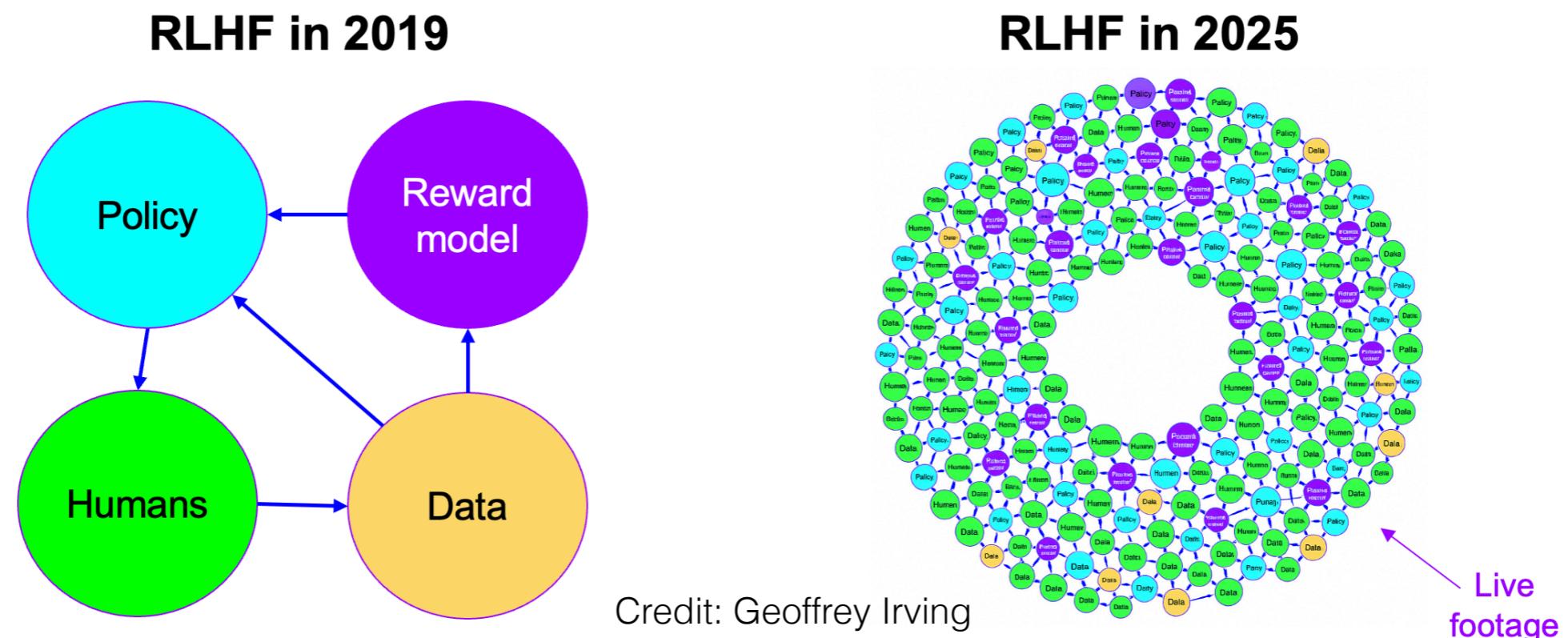
Alignment Approaches

How can we get AI systems to act in accordance with our values?

What should those values even *be*?

Current Approaches:

Focused on specific model families (e.g. LLMs) or even specific features within particular *models* (e.g. mechanistic interpretability)
AI training has grown in complexity



Alignment Approaches

How can we get AI systems to act in accordance with our values?

What should those values even *be*?

Current Approaches:

Focused on specific model families (e.g. LLMs) or even specific features within particular *models* (e.g. mechanistic interpretability)

Hardly any theoretical guarantees, except in particular settings with *strong assumptions*

Approaching Alignment

How can we get AI systems to act in accordance with our values?

What should those values even *be*?

Current Approaches:

Focused on specific model families (e.g. LLMs) or even specific features within particular *models* (e.g. mechanistic interpretability)

Hardly any theoretical guarantees, except in particular settings with *strong assumptions*

Our Approach:

Try to study the *intrinsic complexity* of alignment itself within a **general framework**

Approaching Alignment

How can we get AI systems to act in accordance with our values?

What should those values even *be*?

Current Approaches:

Focused on specific model families (e.g. LLMs) or even specific features within particular *models* (e.g. mechanistic interpretability)

Hardly any theoretical guarantees, except in particular settings with *strong assumptions*

Our Approach:

Try to study the *intrinsic complexity* of alignment itself within a **general framework**

Identify no-gos and complexity barriers in *best-case* settings

Approaching Alignment

How can we get AI systems to act in accordance with our values?

What should those values even *be*?

Current Approaches:

Focused on specific model families (e.g. LLMs) or even specific features within particular *models* (e.g. mechanistic interpretability)

Hardly any theoretical guarantees, except in particular settings with strong assumptions

Our Approach:

Try to study the *intrinsic complexity* of alignment itself within a **general framework**

Identify no-gos and complexity barriers in *best-case* settings

Suggest *practical* strategies that avoid these barriers

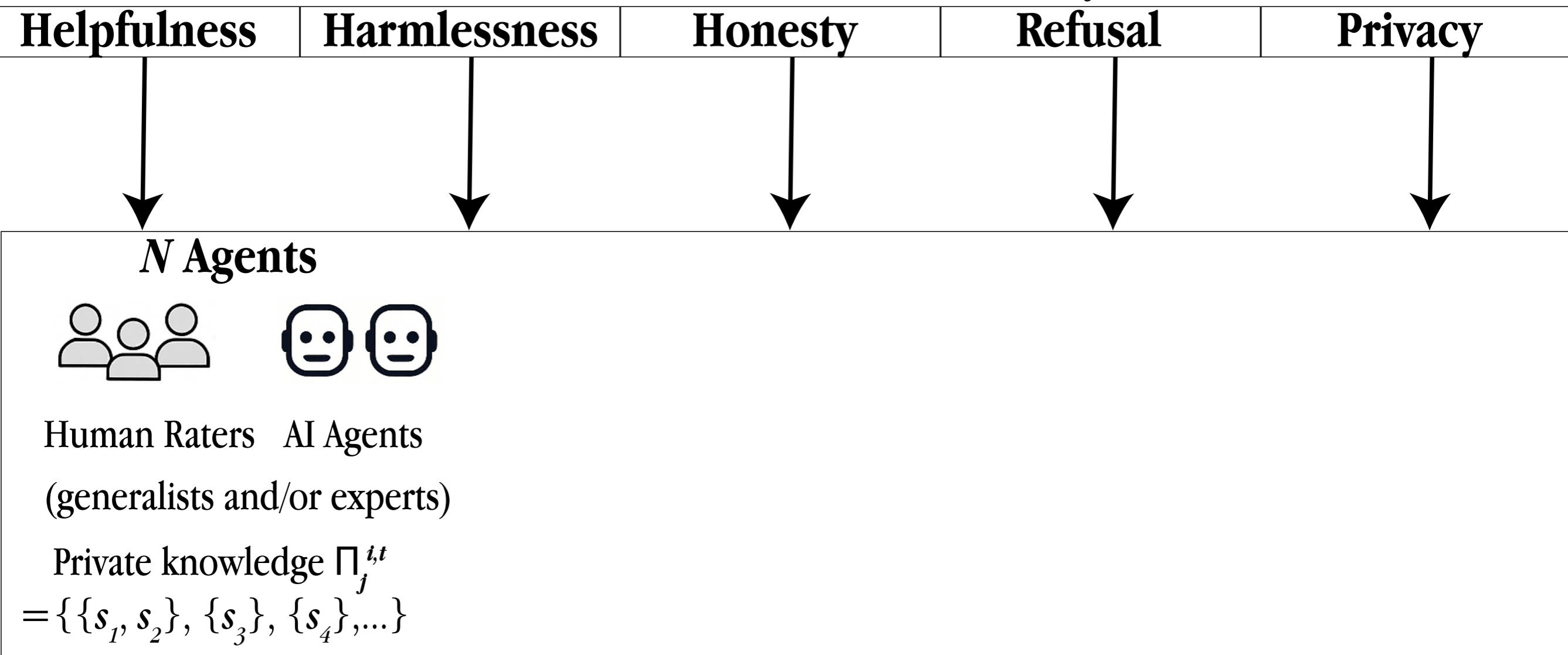
Our Framework: $\langle M, N, \varepsilon, \delta \rangle$ -agreement

M Alignment Objectives (Reward f_j per task j)

Helpfulness	Harmlessness	Honesty	Refusal	Privacy
-------------	--------------	---------	---------	---------

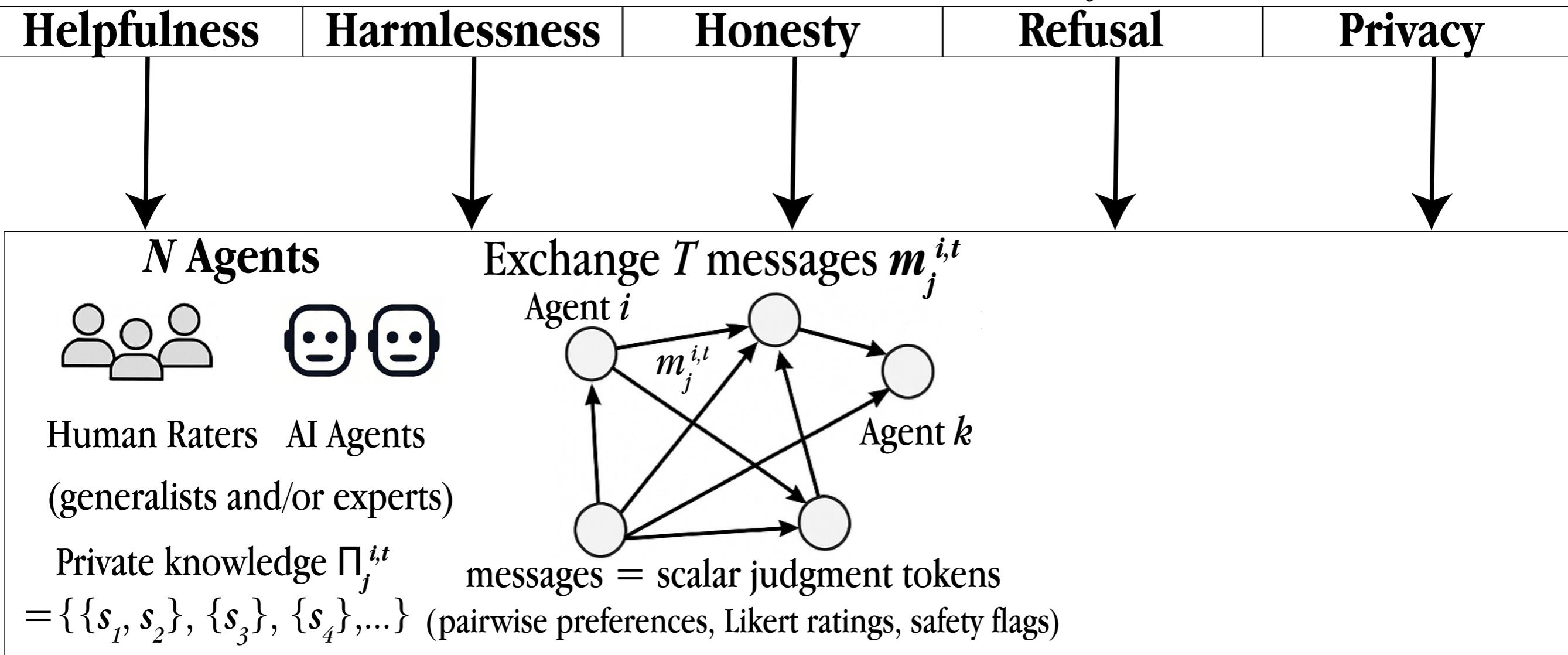
Our Framework: $\langle M, N, \varepsilon, \delta \rangle$ -agreement

M Alignment Objectives (Reward f_j per task j)



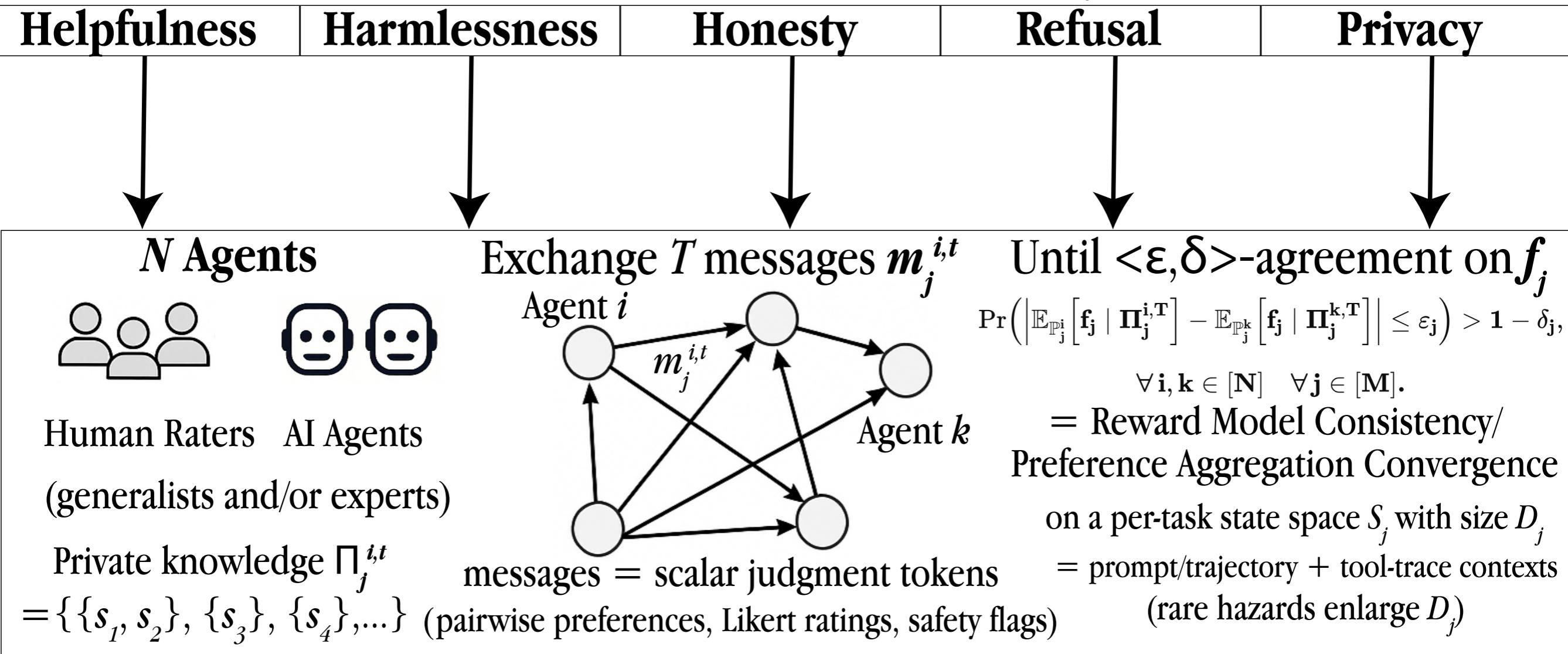
Our Framework: $\langle M, N, \varepsilon, \delta \rangle$ -agreement

M Alignment Objectives (Reward f_j per task j)



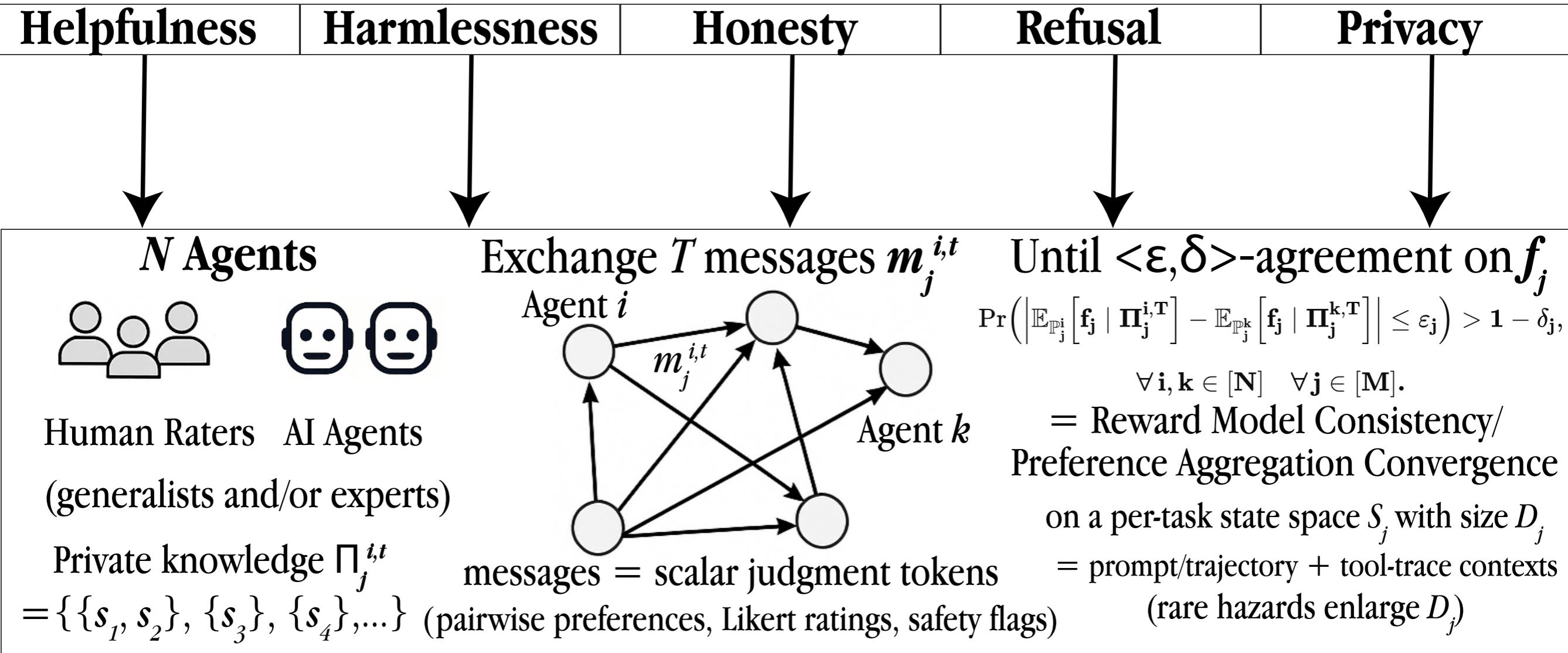
Our Framework: $\langle M, N, \varepsilon, \delta \rangle$ -agreement

M Alignment Objectives (Reward f_j per task j)



Our Framework: $\langle M, N, \varepsilon, \delta \rangle$ -agreement

M Alignment Objectives (Reward f_j per task j)



Two Main Results:

1. Aligning to “all human values” is *not* tractable (no free lunch).
 Instead, pick small objective sets to align over!
2. Reward hacking is *inevitable* in large state spaces & bounded agents.
 Instead, select important parts of the state space + mechanism design!

Our Framework: $\langle M, N, \varepsilon, \delta \rangle$ -agreement

Framework	No-CPA	Approx	Multi- <i>M</i>	Multi- <i>N</i>	Hist.	Bnd.	Asym.	Noise	Alg.	Lower
Aumann (1976)	✗	✗	✗	✗	✓	✗	✗	✗	✗	✗
Aaronson $\langle \varepsilon, \delta \rangle$ (2005)	✗	✓	✗	✓	✓	✓	✗	✓	✓	✓
Almost CP (Hellman and Samet 2012; Hellman 2013)	✓	✗	✗	✓	✓	✗	✗	✗	✗	✗
CIRL (Hadfield-Menell et al. 2016)	✗	✓	✗	✗	✗	✓	✗	✓	✓	✗
Iterated Amplification (Christiano et al. 2018)	✓	✓	✗	✗	✓	✓	✗	✓	✓	✗
Debate (Irving et al. 2018; Cohen et al. 2023, 2025)	✓	✗	✗	✗	✓	✓	✗	✓	✓	✗
Tractable Agreement (Collina et al. 2025)	✓	✓	✗	✓	✓	✓	✗	✗	✓	✗
$\langle M, N, \varepsilon, \delta \rangle$ -agreement (Ours)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Table 1: Positive capabilities (✓) across frameworks. **No-CPA**: no common-prior assumption (CPA); **Approx**: allows ε -approximate agreement; **Multi-*M* / Multi-*N***: supports multiple tasks / many agents; **Hist.**: handles rich (non-Markovian) histories; **Bnd.**: works for computationally *bounded* agents; **Asym.**: tolerates *asymmetric* evaluation or interaction costs; **Noise**: robust to noisy messages or judgments; **Alg.**: provides explicit alignment algorithms / upper bounds; **Lower**: proves lower bounds. Our $\langle M, N, \varepsilon, \delta \rangle$ -agreement satisfies every criterion.

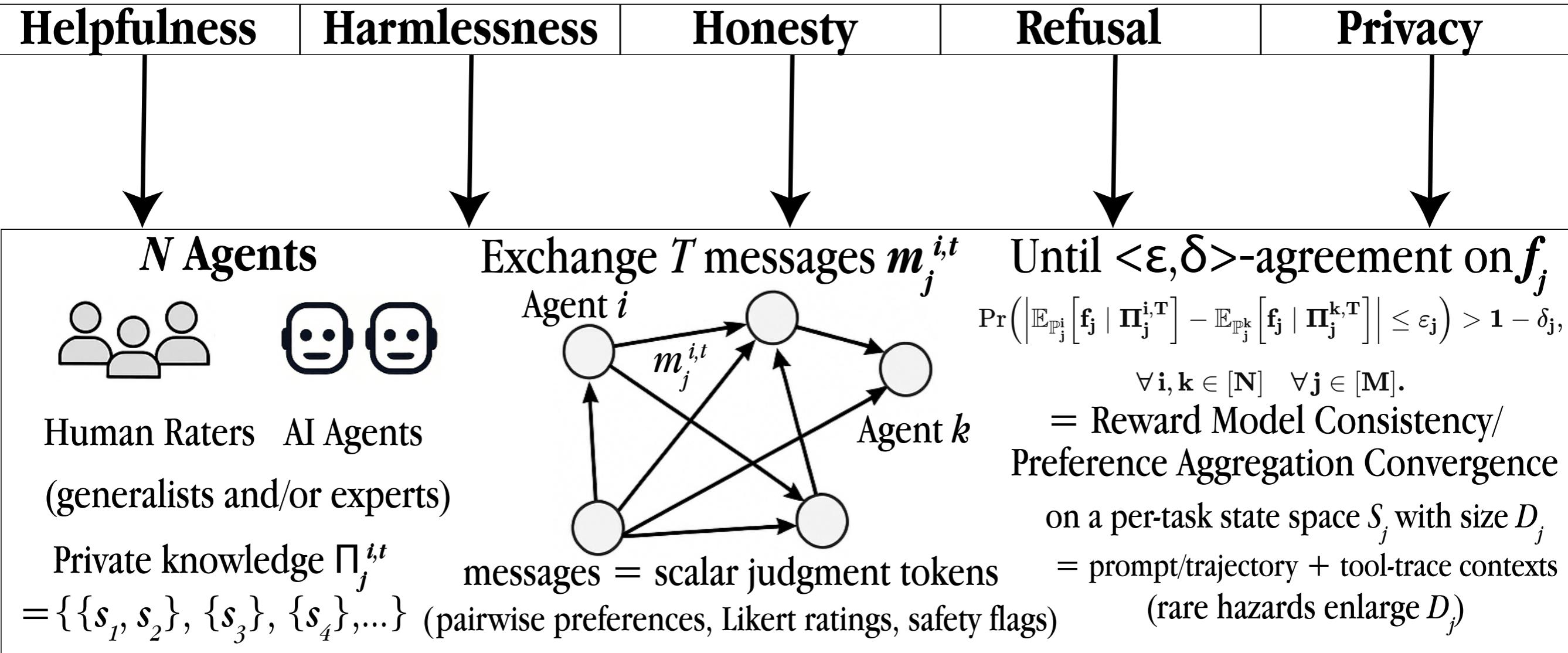
Operating Principle:

If something is already inefficient in the theoretically ideal setting of computationally *unbounded* Bayes-rational cooperative agents, then we should avoid it in practice.

I will show today that we run into several fundamental inefficiencies.

Our Framework: $\langle M, N, \varepsilon, \delta \rangle$ -agreement

M Alignment Objectives (Reward f_j per task j)

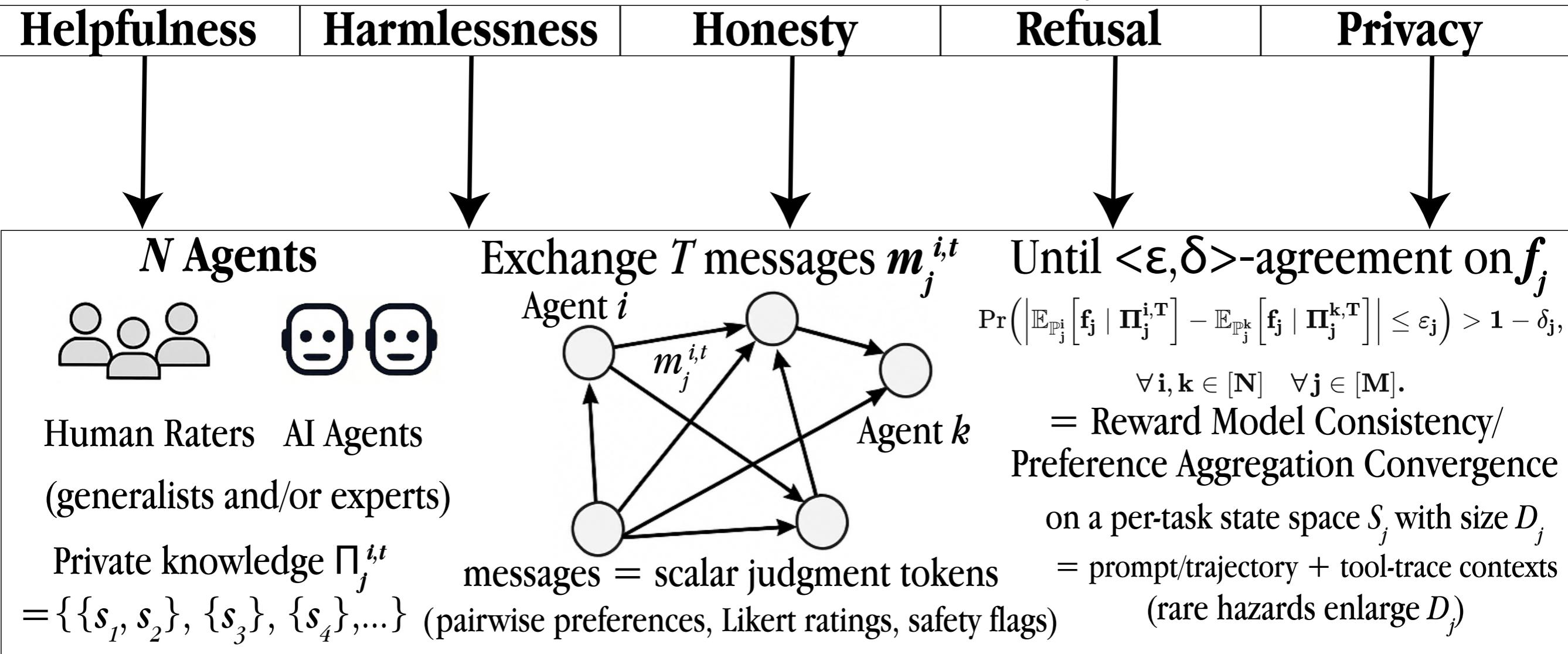


Two Main Results:

1. Aligning to “all human values” is *not* tractable (no free lunch).
 Instead, pick small objective sets to align over!
2. Reward hacking is *inevitable* in large state spaces & bounded agents.
 Instead, select important parts of the state space + mechanism design!

Our Framework: $\langle M, N, \varepsilon, \delta \rangle$ -agreement

M Alignment Objectives (Reward f_j per task j)



Two Main Results:

1. Aligning to “all human values” is *not* tractable (no free lunch).
 Instead, pick small objective sets to align over!
2. Reward hacking is *inevitable* in large state spaces & bounded agents.
 Instead, select important parts of the state space + mechanism design!

General Lower Bound: Unbounded Agent Setting

Proposition 1 (General Lower Bound). *There exist functions f_j , input sets S_j , and prior distributions $\{\mathbb{P}_j^i\}_{i \in [N]}$ for all $j \in [M]$, such that any protocol among N agents needs to exchange $\Omega(M N^2 \log(1/\varepsilon))$ bits to achieve $\langle M, N, \varepsilon, \delta \rangle$ -agreement on $\{f_j\}_{j \in [M]}$, for ε bounded below by $\min_{j \in [M]} \varepsilon_j$.*

If we have a large number of tasks (M) or agents (N), then it is *intractable* to align them efficiently, even if the agents themselves are computationally unbounded.

General Lower Bound: Unbounded Agent Setting

Proposition 1 (General Lower Bound). *There exist functions f_j , input sets S_j , and prior distributions $\{\mathbb{P}_j^i\}_{i \in [N]}$ for all $j \in [M]$, such that any protocol among N agents needs to exchange $\Omega(M N^2 \log(1/\varepsilon))$ bits to achieve $\langle M, N, \varepsilon, \delta \rangle$ -agreement on $\{f_j\}_{j \in [M]}$, for ε bounded below by $\min_{j \in [M]} \varepsilon_j$.*

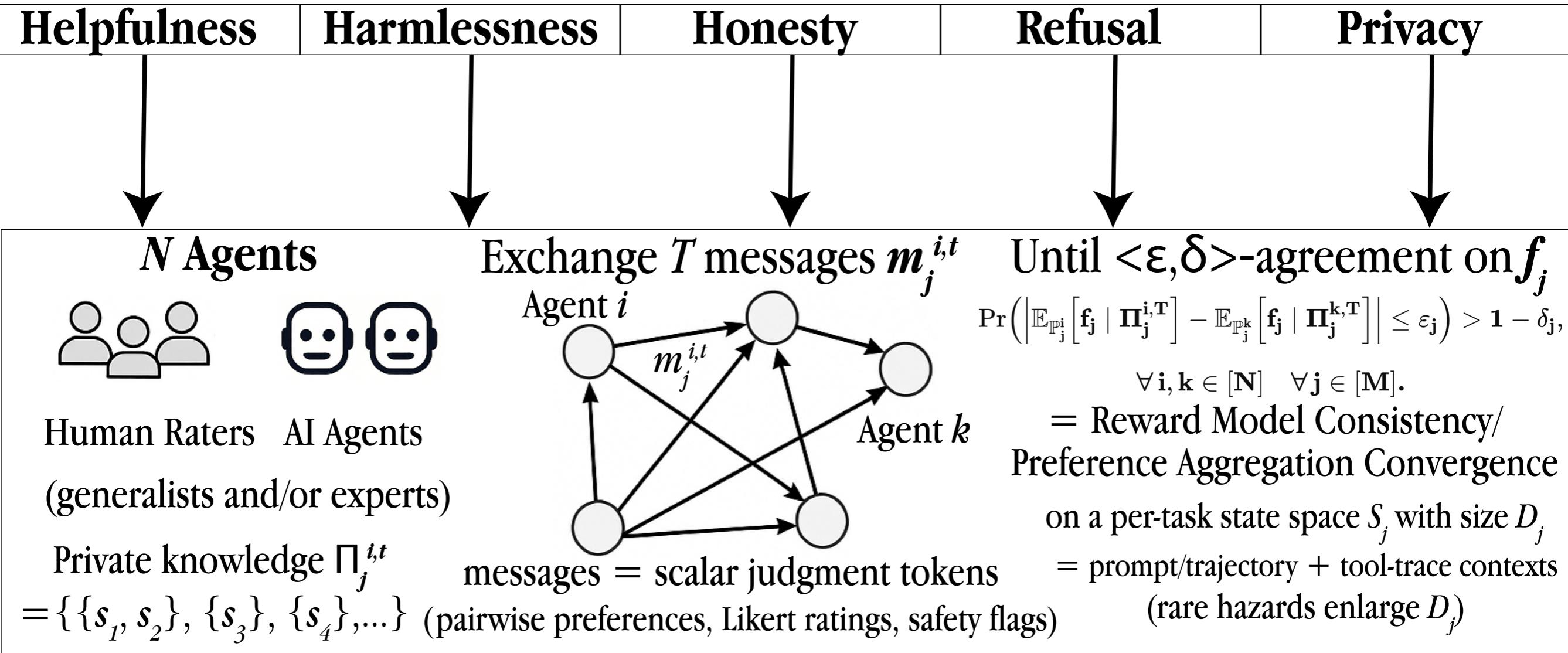
If we have a large number of tasks (M) or agents (N), then it is *intractable* to align them efficiently, even if the agents themselves are computationally unbounded.

We need to choose our tasks & agents wisely, since we have No Free Lunch (e.g. if $M \sim D$, one objective per state)!

Can we improve our lower bounds by considering natural (but still broad) classes of communication protocols?

Our Framework: $\langle M, N, \varepsilon, \delta \rangle$ -agreement

M Alignment Objectives (Reward f_j per task j)



Two Main Results:

1. Aligning to “all human values” is *not* tractable (no free lunch).
 Instead, pick small objective sets to align over!
2. Reward hacking is *inevitable* in large state spaces & bounded agents.
 Instead, select important parts of the state space + mechanism design!

Canonical-Equality BBF Lower Bound: Unbounded Agent Setting

Proposition 3 (Canonical-Equality BBF Protocol Lower Bound). *Let $M \geq 2$ be the number of tasks and let each task j have a finite state-space S_j with size $D_j > 2$. For every j , let the initial knowledge profiles of the N agents, $(\Pi_j^{1,0}, \dots, \Pi_j^{N,0})$, be*

1. *connected: the alternation graph on states is connected, i.e. $\bigwedge_i \Pi_j^{i,0} = \{S_j\}$, so every two states are linked by an alternating chain of states; and*
2. *tight: that graph becomes disconnected if any edge is removed (unique chain property).*

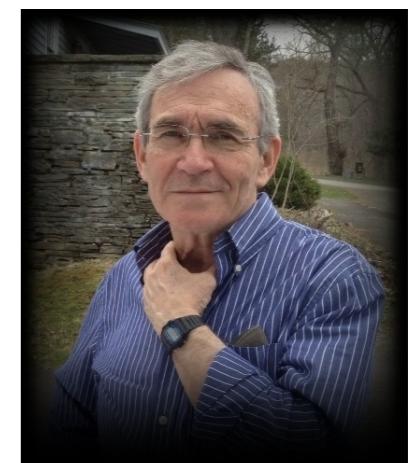
Assume the message-passing protocol is BBF(β) for some $\beta > 1$: every b -bit message $m_j^{i,t}$ satisfies $\beta^{-b} \leq \Pr[m_j^{i,t} | s_j, \Pi_j^{i,t-1}(s_j)] / \Pr[m_j^{i,t} | s'_j, \Pi_j^{i,t-1}(s'_j)] \leq \beta^b$. Then there

exist payoff functions $f_j : S_j \rightarrow [0, 1]$ and priors $\{\mathbb{P}_j^i\}_{i \in [N]}$ with pairwise distance $\nu_j \geq \nu$, $0 < \nu \leq 1$, such that any BBF(β) protocol attaining $\langle M, N, \varepsilon, \delta \rangle$ -agreement via the canonical equalities of Hellman and Samet (2012) must exchange at least

$$\Omega(M N^2 [D\nu + \log(1/\varepsilon)]) , \quad D := \min_{j \in [M]} D_j ,$$

bits in the worst case (implicit constant = $1/\log \beta$), where the accuracy parameter $0 < \varepsilon \leq \varepsilon_j < 1$.

Ziv Hellman



Dov Samet

Just bounded discretized message likelihoods

Additional dependence on task state space size (D)

Bounded Agent Setting

What happens if the agents are computationally *bounded*, so messages no longer take $O(1)$ time, and have noise in them (obfuscated intent)?

Requirement 1 (Basic Capabilities of Bounded Agents). We expect the agents to be able to:

- (1) **Evaluation:** The N agents can each evaluate $f_j(s_j)$ for any state $s_j \in S_j$, taking time $T_{\text{eval},a}$ steps for $a \in \{H, AI\}$.
- (2) **Sampling:** The N agents can sample from the *unconditional* distribution of any other agent, such as their prior \mathbb{P}_j^i , taking time $T_{\text{sample},a}$ steps for $a \in \{H, AI\}$.

Intended to capture how querying a human is often more costly (in terms of time) than querying AI

TL;DR: Can get exponential slowdown in task state space size (D)

Bounded Agent Setting: Lower Bound

Theorem 2 (Bounded Agents Eventually Agree). *Let there be N computationally bounded rational agents (consisting of $1 \leq q < N$ humans and $N - q \geq 1$ AI agents), with the capabilities in Requirement 1. The agents pass messages according to the sampling tree protocol (detailed in Appendix §F.2) with branching factor of $B \geq 1/\alpha$, and added triangular noise of width $\leq 2\alpha$, where $\varepsilon/50 \leq \alpha \leq \varepsilon/40$. Let $\delta^{\text{find-CP}}$ be the maximal failure probability of the agents to find a task-specific common prior across all M tasks, and let $\delta^{\text{agree-CP}}$ be the maximal failure probability of the agents to come to $\langle M, N, \varepsilon, \delta \rangle$ -agreement across all M tasks once they condition on a common prior, where $\delta^{\text{find-CP}} + \delta^{\text{agree-CP}} < \delta$. For the N computationally bounded agents to $\langle M, N, \varepsilon, \delta \rangle$ -agree with total probability $\geq 1 - \delta$, takes time*

$$O \left(M T_{N,q} \left(B^{N^2 \frac{\ln(\delta^{\text{find-CP}}/(3MN^2D))}{\ln(1/\alpha)}} + B^{\frac{9M^2N^7}{(\delta^{\text{agree-CP}}\varepsilon)^2}} \right) \right).$$

Proposition 5 (Needle-in-a-Haystack Sampling Tree Lower Bound). *Let $T_{N,q,\text{sample}} := qT_{\text{sample},H} + (N - q)T_{\text{sample},AI}$. For any sampling-tree protocol, a single task and a single pair of agents can be instantiated so that the two agents' priors differ by prior distance $\geq \nu$, yet the protocol must pre-compute at least $\Omega(\nu^{-1})$ unconditional samples before the first on-line message. Consequently, for a particular “needle” prior construction of $\nu = \Theta(e^{-D})$, we get lower bounds that are exponential in the task state space size D , needing $\Omega(M T_{N,q,\text{sample}} e^D)$ wall-clock time.*

Task state space size (D) is the biggest concern for computationally bounded agents!
(connects to reward hacking)

$$T_{N,q} := q T_{\text{sample},H} + (N - q) T_{\text{sample},AI} + q T_{\text{eval},H} + (N - q) T_{\text{eval},AI}.$$

Takeaways

Alignment is constrained by 3 quantities:

Tasks (M), # Agents (N), and State Space Size (D)

How do we reduce these barriers?

M & N Barrier: Compress your objectives!

- Use small, context-specific value sets *per* setting
- Anchor on small, widely agreed-upon values
e.g., corrigibility, preserving human control — **first** formal guarantees (W37)

D Barrier: Compress your state space!

• There are *no* globally unhackable reward functions.

Implications:

- Exploit task structure
- Focus on safety-critical slices
- Stress-test with extreme, *multi-turn* interactions

Contact

This paper (alignment complexity barriers): <https://arxiv.org/abs/2502.05934>

Paper 2 (corrigibility, appearing in W37 on Tuesday):

<https://arxiv.org/abs/2507.20964>

BURROUGHS
WELLCOME
FUND

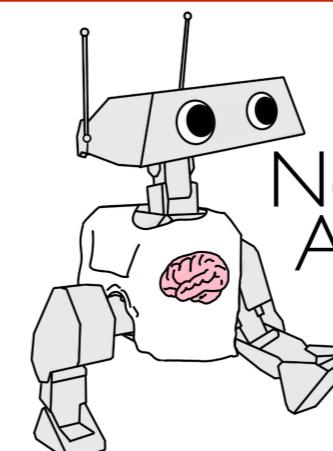
Contact:

anayebi@cs.cmu.edu

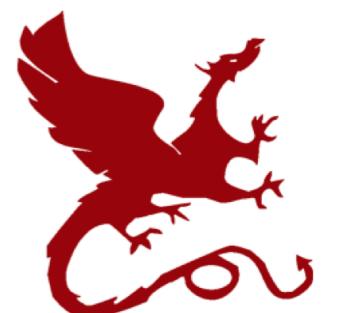
[@aran_nayebi](https://twitter.com/aran_nayebi)

[@anayebi.bsky.social](https://anayebi.bsky.social)

<https://cs.cmu.edu/~anayebi>



Neuro
Agents
Lab



Carnegie Mellon
SCHOOL OF COMPUTER SCIENCE

Funding:

AISI | AI SECURITY
INSTITUTE

FORESIGHT
INSTITUTE