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Instead, pick small objective sets to align over!

2. Reward hacking is inevitable in large state spaces & bounded agents. 
Instead, select important parts of the state space + mechanism design!



Our Framework: ⟨M, N, ε, δ⟩-agreement

I will show today that we run into several fundamental inefficiencies.

If something is already inefficient in the theoretically ideal setting of 
computationally unbounded Bayes-rational cooperative agents, then we 

should avoid it in practice.

Operating Principle:
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General Lower Bound: Unbounded Agent Setting

If we have a large number of tasks (M) or agents (N), then it is 
intractable to align them efficiently, even if the agents themselves are 

computationally unbounded. 
 

We need to choose our tasks & agents wisely, since we have No Free 
Lunch (e.g. if M ~ D, one objective per state)! 
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computationally unbounded. 
 

We need to choose our tasks & agents wisely, since we have No Free 
Lunch (e.g. if M ~ D, one objective per state)! 

Can we improve our lower bounds by considering natural (but still 
broad) classes of communication protocols?
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Canonical-Equality BBF Lower Bound: Unbounded Agent Setting

Additional dependence on 
task state space size (D)

Just bounded discretized 
message likelihoods

Ziv Hellman Dov Samet



Bounded Agent Setting
What happens if the agents are computationally bounded, so messages no 

longer take O(1) time, and have noise in them (obfuscated intent)?

Intended to capture how querying a human is often more costly (in 
terms of time) than querying AI

TL;DR: Can get exponential slowdown in task state space size (D)



Bounded Agent Setting: Lower Bound

Task state space size (D) is the biggest concern for 
computationally bounded agents!

(connects to reward hacking)



Takeaways

Alignment is constrained by 3 quantities: 
# Tasks (M), # Agents (N), and State Space Size (D)

How do we reduce these barriers?

M & N Barrier: Compress your objectives!
•  Use small, context-specific value sets per setting

D Barrier: Compress your state space!

• There are no globally unhackable reward functions.

• Anchor on small, widely agreed-upon values

Implications:
• Exploit task structure
• Focus on safety-critical slices
• Stress-test with extreme, multi-turn interactions

e.g., corrigibility, preserving human control — first formal guarantees (W37)
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