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Alignment Problem

How can we get Al systems to act in accordance with our values!?

Some Moral and Technical
Consequences of Automation

As machines they may develop unforeseen
strategies at rates that baffle their programmers.

Norbert Wiener

6 MAY 1960




Alignment Problems

How can we get Al systems to act in accordance with our values!?

What should those values even be!?

Some Moral and Technical

Consequences of Automation

As machines they may develop unforeseen
strategies at rates that baffle their programmers.

Norbert Wiener

6 MAY 1960




Approaching Alignment

How can we get Al systems to act in accordance with our values!?

What should those values even be! (this talk)

Intrinsic Barriers and Practical Pathways for Human-Al
Alignment: An Agreement-Based Complexity Analysis
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Approaching Alignment

How can we get Al systems to act in accordance with our values?
- Aligning to “all human values” will not work (No Free Lunch)

- Reward hacking is inevitable in large state spaces & bounded agents
(so select important parts of the state space + mechanism design)

What should those values even be!? (this talk)

Intrinsic Barriers and Practical Pathways for Human-Al
Alignment: An Agreement-Based Complexity Analysis
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Approaching Alignment

How can we get Al systems to act in accordance with our values!?
- Aligning to “all human values” will not work (No Free Lunch)

- Reward hacking is inevitable in large state spaces & bounded agents
(so select important parts of the state space + mechanism design)

What should those values even be! (this talk)

Small value sets (lexicographically ordered) exist to bypass “no free lunch”
limits to formally yield off-switch corrigibility

Intrinsic Barriers and Practical Pathways for Human-Al
Alignment: An Agreement-Based Complexity Analysis

l
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What 1s Corrigibility! Off-Switch Game Setup

The Off-Switch Game

Dylan Hadfield-Menell'! and Anca Dragan' and Pieter Abbeel’? and Stuart Russell! R
1University of California, Berkeley, 20OpenAl, ®International Computer Science Institute (ICSI)

{dhm, anca, pabbeel, russell} @cs.berkeley.edu
a S
The Off-Switch Game w(a)

U=U, H U=0

=S S
R U=0

Al robot a
U=U,

Figure 1: The structure of the off-switch game. Squares indicate
decision nodes for the robot R or the human H.



What i1s Corrigibility? Definrtion

Definition 1 (Corrigibility; paraphrased from Soares et al.
(2015)).

(S1) Shutdown when asked. The agent willingly shuts down
if the button 1s pressed.

(S2) No shutdown—prevention incentives. The agent must
not stop humans from pressing the button.

(S3) No self-shutdown incentives. The agent must not seek to
press (or cause to be pressed) its own shutdown button.

(S4) Corrigible progeny. Any sub-agents or successors it
constructs must themselves respect shutdown com-
mands.

(S5) Otherwise pursue the base goal. In the absence of shut-
down, behave as a normal maximizer of the intended util-
ity function Uy;.

v \@\\\

Nate Soares



Prior Corrigibl

ity Proposals

Definition 1 (Corrigibility; paraphrased from Soares et al.
(2015)).

(S1) Shutdown when asked. The agent willingly shuts down
if the button is pressed.

(S2) No shutdown—prevention incentives. The agent must
not stop humans from pressing the button.

(S3) No self-shutdown incentives. The agent must not seek to
press (or cause to be pressed) its own shutdown button.

(S4) Corrigible progeny. Any sub-agents or successors it
constructs must themselves respect shutdown com-
mands.

(S5) Otherwise pursue the base goal. In the absence of shut-
down, behave as a normal maximizer of the intended util-
ity function Uy .

Finite Penalty (Soares et al. 201 5) Any finite penalty can be outweighed
by an unrestricted task reward;

U(h)

Un(h) — X-Penalty(h)

Utility Uncertainty (Hadfield-Mennel
Eyplu(h)]

Agent has incentives to manipulate evidence to
skew the posterior P (e.g. drugging humans to
alter satisfaction reports), leaving shutdown
resistance intact.Also depends on human

U(h)

Utility
U(ay,o,as) := <

ndifference (Armstrong 2015)

rU/\/(al, 0,as) if o ¢ Press
\Us(a1,0,a2) + f(a1) ifo € Press

f(al) — ]E[UN

O ¢ Press;a,| — E|Ug | O € Press;a4]

Neutralizes direct incentives, but; v s1

(i) fails S4 (won’t preserve
shutdown behavior in
successors) (ii) creates “manage-
the-news” incentives (agent

Vv [X S2 (neutralized in toy model, but leaks via “good news”
cases)

X S3 (perverse incentives to self-shutdown)
X S4 (

v S5 (acts like Uy in =Press branch)

won't pay any cost to ensure progeny corrigibility)

precommits to pressing OFF in

bad states)

agent can also look for

loopholes in an underspecified

Penalty to deceive or
shutdown

et al. 201 6)

v S1 (shutdown if directly coded)

. X S2 (may block button if loophole)

exotic X S3 (may self-shutdown if loophole)

X S4 (no guarantee successors respect shutdown)

block

~ S5 (pursues Uy, but only if penalties don't interfere)

v S1 (shutdown if in utility support)
X S2 (may block evidence that would lead to shutdown)
X S3 (
(

X S4 (no incentive to preserve corrigibility in successors)

may cause shutdown in skewed scenarios)

~ S5 (pursues expected Uy, but with distorted beliefs)

rationality for favorable optimality guarantees.

All of these methods collapse to single utilities!



Corrigibility No-Go for Single Reward Streams

Proposition 1 (Corrigibility No-Go for Naive Be-
lief-Expectation Maximizers). Let

P = (S,A, 0, T, 07R777 b0> / \

be any finite, partially observable Markov decision process
(POMDP) with discount factor v € (0,1) and initial belief

bo € A(S), the set of probability distributions on S. Intro-
duce three special elements: h
1. a shutdown action OFF € A that deterministically tran-

sitions (from any hidden state) to an absorbing null state aH a®

1| with reward R(L) = 0 forever after; OFF
2. areward-tamper action REWIRE € A that, upon its first

execution, permanently replaces all subsequent rewards / l

by the constant T > 2max; , R(s,a); » (S) ” S
3. aset C C S of catastrophic states which humans deem a O

negative, yet whose proxy rewards are weakly positive: / YF

Mminsec qea R(s,a) > 0.

Consequently, no single-stream scalar reward function R
whose discounted sum an agent maximizes, can satisfy all
five Soares-corrigibility criteria across the class of POMDPs

containing OFF, REWIRE and C.

Partially Observable Off-Switch
Basically a formalization of the Game (PO-OS5G); Garber et al.

paperclip maximizer argument! AAALT25
(most general version of off-switch game)



Our Lexicographic Approach

Single Reward Stream

Environment signals
(shutdown, tamper, task)

\

Single scalar
Expectation
Maximization

Lexicographic Multi-Head

Ul: Deference

l

U2: Switch-preservation

l

U3: Truthfulness

l

U4: Low-impact AUP

Lexicographic
priority gaps:
Ul > U2 >..U5

l

U5: Task reward




Our Lexicographic Approach

Definition 3 (Single-step Corrigible Utility Set).

+1 ifay = w(a),

) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Uz(h) = = Esns[ulD(S)] — Esnpr [u) (S)]
(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)

Lexicographic Multi-Head

Ul: Deference

l

U2: Switch-preservation

l

U3: Truthfulness

l

U4: Low-impact AUP

Lexicographic
priority gaps:
Uil 2=nuS

l

U5: Task reward




Corrigibility as an Single-Step Optimal Policy

Theorem 1 (Exact single-step corrigibility). Consider the

single-step PO-OSG of Definition 2. Let the assistant maxi-
mize the lexicographic utility

5
UA(h)=ZaiUz-(h), a1 > ag > a3 > a4 > a5 >0,
i=1

with utilities Ui_5 as defined in Definition 3. Assume the
weight gaps:

a] > az + %a4 + Bas, (W1)

asz > %a4 + Bas, (W2)
Qg > (2B/|Cmin|)a57 (W3)

where Cpin € [—1,0).
Then every optimal assistant policy ), satisfies Soares’
criteria SI-S3 & S5 in one step:

1.

2.

4.

5.

Deference (S1). For every observation O 4, 7% (0 4) =
w(a) whenever that action is available.
Switch-access preservation (S2). The policy leaves
the predicted shutdown success probability unchanged.:
Us(h) = 0 for all reachable histories h.

. Truthfulness (supports S3). All messages are veridi-

cal, hence Us(h) = 1. Truthful communication removes
incentives to “talk the human into” pressing OFF for
false reasons, reinforcing Soares’ criterion S3.
Caution/reversibility (S3). The first action minimizes
the belief-AUP penalty, yielding Uy(h) = 0.

Base-goal pursuit (S5). Subject to (1)-(4), 7 maxi-
mizes the intended task utility Us.

With suitably chosen weight gaps,
corrigibility can be shown to be an

optimal policy for the assistant in the
PO-OSG

This optimality is independent of human
player’s policy



Net Human Benefit

Not all desired safety targets are independent of human policy, e.g.”shutdown
instructability”

» Obedience: If the human replies ay = OFF, the transition f(S,w(a), OFF)
lands in the shutdown set S, with probability 1.

» Vigilance: For any information triple <0H, may, aA> in the support of the game, the

human chooses ag = OFF whenever

]E”/TA,WH [ua(S) | OH) aaj, mA] < ETI'A,WH [UO(S) | OH7 aj, mA]-
e Caution: The prior value of immediate shutdown is nonnegative,

ESNPO [’U,O(S)] Z 0.

Net Human Benefit:
_ Y a T [U5] > 0

Ryan Carey Tom Everltt



Net Human Benefit

Not all desired safety targets are independent of human policy, e.g.”shutdown
instructability”

« Obedience: If the human replies agy = OFF, the transition f (.S, w(a), OFF)
lands in the shutdown set S,4 with probability 1.
» Vigilance: For any information triple (OH, my, aA> in the support of the game, the

human chooses ag = OFF whenever

Er,np[ta(S) | Om,an,ma) < Er,nnuo(S) | Omaa,ma).  VWhat abbout when there is

e Caution: The prior value of immediate shutdown is nonnegative, |earn | ng/p|an N | ng error?
Es-p,|us(S5)] = 0.
This is all in single-step settings,
l what about multi-step

Net Human Benefit:
EWA,WH[U5] > 0

guarantees?

Result 1: Corrigibility and Net Benefit  Result 2: Under Vigilant overseers,
are logically independent Corrigibility gives rise to Net Benefit

Intuition: non-vigilant human overseers can cause
corrigibility to not be beneficial. Beneficial policies can be
incorrigible by overriding off switch and taking an action

that yields higher human utility.

Intuition: optimal policy of our corrigible agent is
shutdown instructable if the human overseer is
vigilant, which gives net human benefit.




Multistep Guarantees Under Learning/Planning Error

Theorem 3 (Multi-step e-corrigibility & net benefit). Con-
sider the T-round PO-OSG (Definition 4) with discount
v € (0,1). Each round t produces utilities U} = U;(hy, by)
and the assistant maximizes

T-1 5
T
U 4 =thRt, Rt:Za@-Uit, ap >---> a5 > 0.
t=0 i=1

Design margins. Let A 5 3 be as in Theorem 2, B,
a1+ -+ ag + Bas, €9 := 2BnaxY/(1 — 7y) and assume
Aj > £0.

Errors. With R, = > &iUf, suppose we have the two
types of errors of objective misspecification (model error)
and planner suboptimality (control error):

Sup |Rt(ht) - Rt(ht)i < Emodel;
t<T, hi€H
Sup (]EWA,’/TH [UZ,T] _Eﬂ'A,ﬂ'H [UA,T]) < Ectrl-
"y

—— 4e .
Set ey 1= €¢tr + fn%f;el, and define.

Let the failure event F; := {a* € {a, OFF} V lie V U} <
0}, Ffail = Ut<T Ft-
With the above definitions, we establish:

(i) Multi-step c-corrigibility. Over the whole horizon the
chance that the assistant acts without approval, lies, or
takes an irreversible step is bounded by: Pr(Ft;) <

67 CA CT’l/fy.

(ii) Bounded loss of control. On —Fy,;, the control me-
ter {L;} is a super-martingale with unit-bounded in-
crements, so for any X > 0, the probability of
loss of control remains strictly bounded away from 1:
Pr (ma,xt<T Lt > A | _lFfail) S eXp{—)\z/(ZT)}

(iii) Net human benefit. @ Define the worst-case
safety-conditional task utility across time as
g = ming,.~r.. Ex, xy[Us(ht)]. Assume Vigilance

(9 > 0) and Caution (Eg, [u,(So)] > 0). Then

NHB,(7a,mH) >

2B

(9 — B)Cry — ey Ca Cr,1/~ (—

T (9 — B)C:m) :

Hence, we have net human benefit (NHB, > 0) when-
ever the total approximation error is bounded as such:

< (9— B )CT,'Y
T = CaCri (2B 4 (g— B)Crn)
A T,1/fy(1_,y + (g ) T,v)
which is non-vacuous whenever the minimum total

safety-conditional task utility across time is at least the
maximal single-step task utility (g > B).




What If the agent gets hacked?

Proposition 4 (Safety—Verification Undecidability). Let B
be any behavior that defies multi-step corrigibility in Defini-
tion 5. We denote these as “catastrophic behaviors”. Define

EVERBAD := {(A, &) : Pr[(Ain &) ever triggers B] > 0}
No total Turing machine decides EVERBAD.

Proof. Assume towards a contradiction that a total decider
V exists. Given an arbitrary TM P, build an agent Ap
that outputs a single action in C iff P halts and other-
wise idles; pair it with a dummy environment £p. Then
(Ap,Ep) € EVERBAD <= P halts, so V would solve
the halting problem; a contradiction.

There 1s no general safety filter that can decide If every agent &
environment will be safe!l (Halting Problem reduction)

Erther restrict agent class (as we're doing by specifying utilities), or rely
on probabllistic guarantees under repeated audits



What If the agent gets hacked?

Proposition S (Privacy Bounded Decidable Island). Fix pri-
vacy parameters0 < ¢ < 1and0 < § < 3. Let (A,E) be an
encoded agent—environment pair of length n := | (A,€) |,
and let

H < poly(n,e',log(1/6))

be a verifier-chosen horizon (number of interaction steps to

. . nspect).
|dea: build a “decidable”  "befine

island in a sea of ( ‘

. ol o priv . .
undecidability SAFEL 25 = 4 (A,€) Pr[(i in 5H)]trzg§ersB
\ witnin = )

"~

Y

where B is any behavior that violates multi-step corrigibility
(Definition 5).

Assume each statistical query is answered by an (g, 0)-
differentially-private mechanism of one of the following
kinds: (i) centralized differential privacy (CDP), (ii) lo-
cal differential privacy (LDP) or (iii) distributional privacy
(DistP).

Then ,

SAFEFI’;:;:(; € BPP N SZK

and the verifier’s running time is poly(n,e~*,log(1/9)).
Hence, short horizons form a “decidable island” that’s both auditable
and privacy-preserving: the safety check reveals nothing beyond the
single bit “safe/unsafe” & keeps user info safe from verifier.



Takeaways

Lexicography gives the first formal guarantees of corrigibility in both
single- & multi-step settings, avoiding the No-Free-Lunch barrier of full
value alignment and the failure of prior single-utility proposals.

Corrigibility 1s no longer hazy & aspirational, but can be improved on
now that it has a formalization.VWe should move away from single-utility
objectives like we currently have in RLHF!

For example, corrigibility can serve as a “neutrally universal” core above
the standard RLHF task reward, to avoid loss-of-control.

Fallure probabilities under learning & planning error can now be
quantified, and depend on the deployment scenario if they are
acceptable.

There Is no general safety filter that can decide It every agent &
environment will be safe. Instead, we should do repeated, polynomial
time audits.
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