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Operating Principle

If something is already inefficient in the theoretically ideal setting of
capable agents, then we should avoid it in current practice where we
will have malfunctioning or non-cooperative (& non-rational) agents.




Operating Principle

If something is already inefficient in the theoretically ideal setting of
capable agents, then we should avoid it in current practice where we
will have malfunctioning or non-cooperative (& non-rational) agents.

| will show today that we run into several fundamental inefficiencies
for Al alignment in general with capable agents.
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Q: If an agent is“‘sufﬁciently capable”} can we also ensure that it is
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What do these words mean?

4 different definitions of a guardrall!
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Can a Bayesian Oracle Prevent Harm from an Agent?
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Safety guardrails. A guardrail is an algorithm that, given a possible action and context (e.g.,
current state and history), determines whether taking the action in the context is admissible. A
guardrail can be used to mask the policy to forbid certain actions, such as those whose estimated
harm exceeds some threshold C.

We compare several guardrails: those constructed from Proposition 3.4 and Proposition 4.6, one that
marginalizes across the posterior over 7 to get the posterior predictive harm probability, and one that
‘cheats’ by using the probability of harm under the true theory 7*. We define the four guardrails
formally below. Recall that Z;.; consists of the observations (i.e., actions taken and rewards received)
at previous timesteps.

e o 0 0 0 0 0 0 o

 Proposition 3.4 guardrail: rejects an action a;, if there exists ¥ € argmax, P(7 | Z1.;) P(Yz41 =
1| 7,214, a041) WithP(Yyyy = 1 | T, Z14, ar41) > C (note that the assumptions of i.i.d. observations
and distinct theories are not satisfied here).

» Proposition 4.6 guardrail: rejects an action a,,; if max ¢ Mg, P(Yis1=1|Zy4,71,a:41) > C.

® 0 0000060000000 0 0 0
* o 0o 0 0 0 0 0

« Posterior predictive guardrail: rejects an action a1 if P(Yys1 =1 | Z1:4, azs1) > C.
* Cheating guardrail: rejects an action a;y; if P(Yie1 = 1 | Z14,7%,a:41) > C (note that this
guardrail assumes knowledge of the true theory 7%).
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The guardrail is run at every sampling step, and actions that the guardrail rejects are forbidden to be
sampled by the agent. If all actions are rejected by the guardrail, the episode terminates.
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The Amnnals of Statistics
1976, Vol. 4, No. 6, 1236-1239

AGREEING TO DISAGREE!

By ROBERT J. AUMANN
Stanford University and the Hebrew University of Jerusalem

Two people, 1 and 2, are said to have common knowledge of an event
E if both know it, 1 knows that 2 knows it, 2 knows that 1 knows is, 1
knows that 2 knows that 1 knows it, and so on.

THEOREM. If two people have the same priors, and their posteriors for an
event A are common knowledge, then these posteriors are equal.
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ALGORITHM 1: (M, N, ¢, §)-Agreement

Input: A set of N agents, each with an initial knowledge partition {H;’O}ﬁ.\i | for each task j € [M].
A message protocol P, dictating how agents send/receive messages and refine partitions.
A subroutine CONSTRUCTCOMMONPRIOR, defined in Algorithm 2, which attempts to construct a
common prior given the current partitions and posteriors.
A known (¢, §)-agreement protocol A (used once a common prior is found).
Output: Agents reach (e >0 j)-agreement for all M tasks.
(M, N, ¢,5)-Agreement (P, A):
for j=1toMdo
t «— 0;
while true do
te—t+1;
foreach agenti € [N] do

Agent i sends message mj.’t (task j, corresponding to f;) as specified by P;

I'Ij.’t « RefinePartition (Hj.’t_1
end
CPj « ConstructCommonPrior({Hj.’t}Ji\il, {rji.’t}f.il);
if CP; # INFEASIBLE then
Condition all agents on CP; for task j;
RunCPAgreement (A, P,CPj, fj, €j,0;);
break;

.,t .
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end

end

17 end
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for j=1toMdo
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2. N agents
exchange
messages until
they reach a
common prior

3. Condition on
common prior
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Fundamental Lower Bound: Unbounded Agent Setting

PROPOSITION 2.6 (LOWER BOUND). There exist functions f;, input sets S;j, and prior distributions
{Pj.}i €INI forall j € [M), such that any protocol among N agents needs to exchange Q (M N? log (1/¢))

bits to achieve (M, N, ¢, 5)-agreement on {f;} jcm, for € bounded bel 0 c M €j-

If we have a large number of tasks (M) or agents (N), then it is
impossible to always align them efficiently, even if the agents are
computationally unbounded.

We need to choose our tasks & agents wisely!

Open Question (where Implication: Brain-
Computer Interfaces won’t

NeuroAl can help') unilaterally solve the
What agent utility alignment problem because

functions lead to the minimum number of bits

exchanged could be too

Incentives better for us? large!
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PROPOSITION 2.5 (D1SCRETIZED EXTENSION). If N agents only communicate their discretized ex-

pectations, then they will (M, N, ¢, ) -agree with overall failure probability 6 across M tasks as defined
M’N’

in(2), afterT = O (MN2+ 57 ) messages, where D := maxc[p Dj and € := min e €. Thus,

1
for the special case of M = 1 tasks and N = 2 agents, this becomes T = O (E + @) messages before
they (M, N, ¢, §)-agree with total probability > 1 — 6.

Discretized messages don’t speed things up over real-valued messages
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Requirement 1 (Basic Capabilities of Bounded Agents). We expect the agents to be able to:

(1) Evaluation: The N agents can each evaluate f;(s;) for any state s; € S;, taking time Ty, 4
steps for a € {H, Al}.

(2) Sampling: The N agents can sample from the unconditional distribution of any other agent,
such as their prior P, taking time Tsample,q Steps for a € {H, AI}.

Intended to capture how querying a human is often more costly (in
terms of time) than querying Al

Note: Fval and sampling are black-boxes—agents learn through
subroutines, not explicit descriptions. This reflects how we often
recognize task completion without predefining execution steps.

TL;DR: Exponential slowdown in task state space size (D)
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rational agents (consisting of 1 < q < N humans and N — q > 1 Al agents), with the capabilities in
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of the agents to come to (M, N, ¢, §)-agreement across all M tasks once they condition on a common
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What If the bounded agents want to pass a “Bayesian Turing Test” of
sorts: Namely, act indistinguishably from an unbounded Bayesian across
all M tasks, as refereed by a watchful unbounded Bayesian?

We will call them “Total Bayesian Wannabes”

if iInterested, the technical definition Is here:

Definition 1 (Total Bayesian Wannabe). Let the N agents have the capabilities in Requirement 1.
For each task j € [M], let the transcript of T messages exchanged between N agents be denoted as

Ej = <m} ..... mjr> Let their initial, task-specific priors be denoted by {Pj.}ie[N I. Let B(s ;i) be the
distribution over message transcripts if the N agents are unbounded Bayesians, and the current

task state is s; € S;. Analogously, let ‘W (s;) be the distribution over message transcripts if the N

agents are “total Bayesian wannabes”, and the current task state is s; € S;. Then we require for all
Boolean functions® ®(s;, E;),

P O(s;, 2i) =1 - P O(s;,2;) =1||| <pj, Vje[M].
LB eeE =] R [eE) = 1)) <p;
sje{PL}icIN] sje{PL}icIN] .

We can set p; € R as arbitrarily small as preferred, and it will be convenient to only consider a
single p := min;car p; without loss of generality (corresponding to the most “stringent” task j).



Jotal Bayesian Wannabes Totally Wanna Agree If They Have Enough Time

= 0 (1.31 x 1026125365467

256

2097152

((1100)(1/4)6
0

(1/2) 77

If the agents are computationally bounded, this can currently take

more subroutine calls than the number of atoms in the observable
universe! (~4.8 x 1079)
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Fven once we have capable agents, Al alisnment can be computationally
infeasible in general,

In fact, we showed that alignment Is fundamentally constrained by 3
quantities: the number of tasks (M), agents (N), and task state
space size (D). The setting we consider here Is a “best-case scenario”
In some sense, and we already run into inefficiencies here.

Thus, alignment might not be a scalable approach to Al safety in many
settings, as It requires a lot of structure to be provably efficient. For
example, we prescribe the following prescriptions for specific problems
to avoid intractabilities:
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Prescriptions for Practice

|. Choose your tasks & agents wisely. Cut down on task space, e.g. don't
always steer the base model directly, but “funnel” it through a smaller
task space when possible.

2. Leverage inductive biases of the task structure & agent architecture
(encourages “efficient sampleability of posteriors’™)

3. Pretrain on human preferences (encourages a “‘common prior’):
Where NeuroAl can help!

4. Agents minimally should have 3 features: bounded theory of mind,
memory, and rationality. Constrtutes a “sufficiently safe” agent in this
context to prove alignment guarantees.

5. Constraints on Obfuscated Intent: Not all communication noise Is an
equally good choice to ensure alignment! (e.g. uniform noise won't
work)

Check out the paper for lots more detalls for each of these! (pp. |5-17/)
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We live In a society where people do not agree most of the time, but
nothing “civilization-ending” has happened (yet)!

Not all tasks require high agreement to avoid catastrophe:
e.g. making a sandwich vs. running a nuclear power plant.

Al 1s something we are intentionally creating, so we should hold 1t to a
higher standard than we do for other humans. Ensuring better
incentives for Al agents that we can mostly agree on?! (open question)

In some sense, the Pareto-optimal “worst case” Is that It humans fail to
sustain themselves for various reasons, at least we have something that
carries on our Intellectual legacy:

“Will robots inherit the earth? Yes, but they will be our children. We owe our minds to
the deaths and lives of all the creatures that were ever engaged in the struggle called
Evolution. Our job is to see that all this work shall not end up in meaningless waste.”

— Marvin Minsky [36], 1994
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