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If something is already inefficient in the theoretically ideal setting of 
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will have malfunctioning or non-cooperative (& non-rational) agents.

I will show today that we run into several fundamental inefficiencies 
for AI alignment in general with capable agents.
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“sufficiently safe”?

Q’: If an agent can carry out tasks to completion with a human, can 
we also ensure that it is agrees with the human’s preferences for that 

task?

Can carry out tasks to completion 
(with a human) Relative to that human’s task 

preferences

Note: Current LLM agents don’t always 
satisfy this assumption leading 

immediately to misalignment, so this 
would be a quite “generally-capable” 

agent that’s yet to be built.

But requires 2 core ingredients:
(1) Coordination 
(2) Partial Information

We basically need to formalize 
this

(Therefore needs a theoretical treatment, since we can’t simply 
“run” these agents forward — we don’t have them yet!)

Game Theory! 
(a bad model of human behavior, but a 
great model of ideally rational agents)
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Our Framework: Explicit Algorithm

1. For each one of the M tasks

2. N agents 
exchange 

messages until 
they reach a 

common prior

3. Condition on 
common prior 
until agreement
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Fundamental Lower Bound: Unbounded Agent Setting

If we have a large number of tasks (M) or agents (N), then it is 
impossible to always align them efficiently, even if the agents are 

computationally unbounded. 
 

We need to choose our tasks & agents wisely!

Open Question (where 
NeuroAI can help!): 

What agent utility 
functions lead to 

incentives better for us?

Implication: Brain-
Computer Interfaces won’t 

unilaterally solve the 
alignment problem because 
the minimum number of bits 

exchanged could be too 
large!



Upper Bounds: Unbounded Agent Setting



Upper Bounds: Unbounded Agent Setting



Upper Bounds: Unbounded Agent Setting

Linear in task state space size D (which is usually exponentially large 
in practice!)



Upper Bounds: Unbounded Agent Setting

Linear in task state space size D (which is usually exponentially large 
in practice!)



Upper Bounds: Unbounded Agent Setting

Linear in task state space size D (which is usually exponentially large 
in practice!)

Discretized messages don’t speed things up over real-valued messages



Bounded Agent Setting
What happens if the agents are computationally bounded, so messages no 

longer take O(1) time, and have noise in them (obfuscated intent)?



Bounded Agent Setting
What happens if the agents are computationally bounded, so messages no 

longer take O(1) time, and have noise in them (obfuscated intent)?



Bounded Agent Setting
What happens if the agents are computationally bounded, so messages no 

longer take O(1) time, and have noise in them (obfuscated intent)?

Intended to capture how querying a human is often more costly (in 
terms of time) than querying AI



Bounded Agent Setting
What happens if the agents are computationally bounded, so messages no 

longer take O(1) time, and have noise in them (obfuscated intent)?

Intended to capture how querying a human is often more costly (in 
terms of time) than querying AI

Note: Eval and sampling are black-boxes—agents learn through 
subroutines, not explicit descriptions. This reflects how we often 
recognize task completion without predefining execution steps.



Bounded Agent Setting
What happens if the agents are computationally bounded, so messages no 

longer take O(1) time, and have noise in them (obfuscated intent)?

Intended to capture how querying a human is often more costly (in 
terms of time) than querying AI

TL;DR: Exponential slowdown in task state space size (D)

Note: Eval and sampling are black-boxes—agents learn through 
subroutines, not explicit descriptions. This reflects how we often 
recognize task completion without predefining execution steps.
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case:

N agent 
case:

Main Results: Bounded Agent Setting

Obviously this is all bad, but humor me for a moment… just how bad can it get exactly?
Becomes exponential in task state space D!
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Total Bayesian Wannabe
What if the bounded agents want to pass a “Bayesian Turing Test” of 

sorts: Namely, act indistinguishably from an unbounded Bayesian across 
all M tasks, as refereed by a watchful unbounded Bayesian?

We will call them “Total Bayesian Wannabes”

If interested, the technical definition is here:



Total Bayesian Wannabes Totally Wanna Agree If They Have Enough Time

If the agents are computationally bounded, this can currently take 
more subroutine calls than the number of atoms in the observable 

universe! (~4.8 x 1079)
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1. Choose your tasks & agents wisely. Cut down on task space, e.g. don’t 
always steer the base model directly, but “funnel” it through a smaller 

task space when possible.

2. Leverage inductive biases of the task structure & agent architecture 
(encourages “efficient sampleability of posteriors”)

3. Pretrain on human preferences (encourages a “common prior”): 
Where NeuroAI can help!

4. Agents minimally should have 3 features: bounded theory of mind, 
memory, and rationality. Constitutes a “sufficiently safe” agent in this 

context to prove alignment guarantees.
5. Constraints on Obfuscated Intent: Not all communication noise is an 

equally good choice to ensure alignment! (e.g. uniform noise won’t 
work)

Check out the paper for lots more details for each of these! (pp. 15-17)
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