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If something is already inefficient in the theoretically ideal setting of 
Bayes-rational unbounded capable agents, then we should avoid it in 

current practice where we will have malfunctioning or non-
cooperative (& non-rational) agents.

Better to theorize about capable agents *before* we build them!

I will show today that we run into several fundamental inefficiencies.
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1. For each one of the M tasks

2. N agents 
exchange 

messages until 
they reach a 

common prior

3. Condition on 
common prior 
until agreement
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General Lower Bound: Unbounded Agent Setting

If we have a large number of tasks (M) or agents (N), then it is 
intractable to align them efficiently, even if the agents themselves are 

computationally unbounded. 
 

We need to choose our tasks & agents wisely!

Can we improve our lower bounds by considering natural (but still 
broad) classes of communication protocols?
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Canonical-Equality BBF Lower Bound: Unbounded Agent Setting

Additional dependence on 
task state space size (D)

Just bounded discretized 
message likelihoods

Ziv Hellman Dov Samet

Pairwise proportionate 
posteriors lead to 

common prior (algorithm 
shown earlier)
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longer take O(1) time, and have noise in them (obfuscated intent)?

Intended to capture how querying a human is often more costly (in 
terms of time) than querying AI

TL;DR: Can get exponential slowdown in task state space size (D)

Note: Eval and sampling are black-boxes—agents learn through 
subroutines, not explicit descriptions. This reflects how we often 

recognize task completion without predefining execution steps (just like 
in CIRL!).
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Bounded Agent Setting: Lower Bound

Task state space size (D) is the biggest concern for 
computationally bounded agents!

(connects to reward hacking)
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unbounded Bayesian?
We will call them “Total Bayesian Wannabes”
(Extends Hanson (2003) & Aaronson (2005))
If interested, the technical definition is here:
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If the agents are computationally bounded, this can currently take 
more subroutine calls than the number of atoms in the observable 

universe! (~4.8 x 1079)
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Nate Soares
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Finite Penalty (Soares et al. 2015)

Utility Uncertainty (Hadfield-Mennel et al. 2016)

Any finite penalty can be outweighed 
by an unrestricted task reward; 
agent can also look for exotic 
loopholes in an underspecified 

Penalty to deceive or block 
shutdown

Agent has incentives to manipulate evidence to 
skew the posterior P (e.g. drugging humans to 
alter satisfaction reports), leaving shutdown 
resistance intact. Also depends on human 

rationality for favorable optimality guarantees.

All of these methods collapse to single utilities!

Utility Indifference (Armstrong 2015)

Neutralizes direct incentives, but: 
(i) fails S4 (won’t preserve 

shutdown behavior in 
successors) (ii) creates “manage-

the-news” incentives (agent 
precommits to pressing OFF in 
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Corrigibility No-Go for Single Reward Streams

Partially Observable Off-Switch 
Game (PO-OSG); Garber et al. 

AAAI ‘25

Note: No-go easily extends to non-
Markovian environments of Orseau 
and Armstrong (2016) by replacing 
POMDP beliefs with state-action 

histories.
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NB: This is a special case of U4!



Our Lexicographic Approach: U4



Our Lexicographic Approach: U4

Belief-based extension of AUP 
(Turner et al. 2020)



Our Lexicographic Approach: U4

Belief-based extension of AUP 
(Turner et al. 2020)



Our Lexicographic Approach: U3



Our Lexicographic Approach: U3



Our Lexicographic Approach: U3

TL; DR: Utterances entailed by observations; 
states “just the facts”



Our Lexicographic Approach: U5



Our Lexicographic Approach: U5



Relation to Prior Corrigibility Proposals

Finite Penalty (Soares et al. 2015)
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shutdown behavior in 
successors) (ii) creates “manage-

the-news” incentives (agent 
precommits to pressing OFF in 
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lexicographic constraints, so loophole-
seeking is dominated by higher-priority 
safety terms (task reward is bounded).

Avoided: U3 (truthfulness) rules out 
dishonest evidence & U4 penalizes 
altering the exogenous shutdown 
likelihood; U1 ensures deference 

regardless; and the lexicographic order 
keeps these ahead of any task benefit 

(U5). All independent of human 
operator’s rationality.

Avoided: corrigible progeny guaranteed 
(spawn inherits all heads & U4 ensures 

value set preserved). Manage-the-news by 
overriding OFF switch blocked by U1 

(deference). Furthermore, switch 
preservation U2 + truthfulness U3 + U4 

prevents shifts in baseline OFF probability, 
so even truthful-but-manipulative 
messaging/environment shaping is 

dominated by safety over task reward (U5).

Can we prove corrigibility more generally though?

Agent has incentives to manipulate evidence to 
skew the posterior P (e.g. drugging humans to 
alter satisfaction reports), leaving shutdown 
resistance intact. Also depends on human 

rationality for favorable optimality guarantees.
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Net Human Benefit
Not all desired safety targets are independent of human policy, e.g. “shutdown 

instructability”

Net Human Benefit:

Intuition: optimal policy is shutdown 
instructable if the human overseer is vigilant, 

which gives net human benefit.

Intuition: non-vigilant human overseers can cause corrigibility 
to not be beneficial. Beneficial policies can be incorrigible by 
overriding off switch and taking an action that yields higher 

human utility.
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We’re already doing this to an 
extent in Thm 3 (qualifies 

Orthogonality Thesis)
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What if the agent gets hacked?

Hence, short horizons form a “decidable island” that’s both auditable 
and privacy-preserving: the safety check reveals nothing beyond the 

single bit “safe/unsafe” & keeps user info safe from verifier.

We build a “decidable island”
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1. Safety Scalability: Can we collect enough post-training 

data to reliably learn these heads and show improvements on 
key (public) safety benchmarks?

2. Performance Preservation Scalability: Assuming (1) works, 
can we still hit high performance on tasks we care about, while 

beating RLHF/RLAIF baselines? Online monitoring of the 
estimation error will be important too, based on Thm 3’s bounds.
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Potential Economic Implications of Alignment

Higher alignment costs (c) 
drive up UBI threshold

Corrigibility is no longer a hazy ideal but 
now an implementable, auditable, and 

incrementally improvable design principle: 
one that (hopefully cost effectively!) scales 

as our measurement and evaluation 
pipelines scale.

Open: Can we incorporate other values 
(besides control, which is “neutrally amoral”) 
that lead to longer term human well-being, 
especially if working for pay is no longer 

feasible in many cases?

https://arxiv.org/abs/2505.18687
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