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Alignment Problem

Some Moral and Technical
Consequences of Automation

As machines learn they may develop unforeseen
strategies at rates that baffle their programmers.
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Approaching Alignment: Motivation

We all know the fable of the sorcerer’s apprentice,
in which the boy makes the broom carry water in
his master's absence, so that it is on the verge of

drowning him when his master reappears.

Disastrous results are to be expected not only in
the world of fairy tales but also in the real world
wherever two agencies essentially foreign to each
other are coupled in an attempt to achieve a
common purpose. If the communication between -alpf.. |
these two agencies regarding the nature of this
purpose is incomplete, it must be expected that the
results of this cooperation will be unsatisfactory.

Norbert Wiener

Some Moral and Technical
6 MAY 1960

Consequences ol Automation



Approaching Alignment: Motivation

We all know the fable of the sorcerer’s apprentice,
in which the boy makes the broom carry water in
his master's absence, so that it is on the verge of

drowning him when his master reappears.

Disastrous results are to be expected not only in
the world of fairy tales but also in the real world
wherever two agencies essentially foreign to each
other are coupled in an attempt to achieve a

|common purpose.|If the [communication|between A 4 |
these two agencies regarding the nature of this
purpose is incomplete, it must be expected that the
results of this|cooperation| will be unsatistactory.

Norbert Wiener

Some Moral and Technical
. 6 MAY 1960
Consequences ol Automation



Alignment: Major Theoretical Frameworks




Alignment: Major Theoretical Frameworks

Al Safety via Debate (Irving, Christiano, Amodei 2018).



Alignment: Major Theoretical Frameworks

Al Safety via Debate (Irving, Christiano,Amodei 2018).

| Question =
ﬂ o Bob Human
L o0 Al == decides
ool ©0 S Question by Alice who won
Bob *7()
R
Bob




Alignment: Major Theoretical Frameworks

Al Safety via Debate (Irving, Christiano,Amodei 2018).

=2 o, =

e o Bob Human
L o0 Al == decides
ool ©0© o Question v Alice who won
2
R
'Bob

CIRL (Hadfield-Menell et al. 2016).



Alignment: Major Theoretical Frameworks

Al Safety via Debate (Irving, Christiano,Amodei 2018).

m &xo‘b Bob Ali
ool ©O = Question 7 lce
Bob 2
. % 0P
Boy,

CIRL (Hadfield-Menell et al. 2016).

@ 2
[demonstrationsj(_ D . v
i reward sl ;
J | function |
l |

Human
== decides

who won



Alignment: Major Theoretical Frameworks

Q: Can we prove anything about these types of interactive settings in
general, without having to always assume exact alighment or common
priors (to avoid specific, toy problems)?

CIRL

Debate




Alignment: Major Theoretical Frameworks

Q: Can we prove anything about these types of interactive settings in
general, without having to always assume exact alighment or common
priors (to avoid specific, toy problems)?

Four Key Abstractions underlying these settings:

CIRL

|
€)
|

Debate

[demonstrationsl__
i




Alignment: Major Theoretical Frameworks

Q: Can we prove anything about these types of interactive settings in
general, without having to always assume exact alighment or common
priors (to avoid specific, toy problems)?

Four Key Abstractions underlying these settings:

Iterative Reasoning
Mutual Updating
Common Knowledge (not common priors!)
Convergence under shared frameworks

CIRL

[demonstrationsl__
i

AW —

Debate




Aumann’s Agreement [heorem

AW —

| A \ oW, N~
' v‘ | \-‘.‘ ‘\ 7 '* ’ " i J
. /I /
tm P {
! ,"‘.
W
&
ol

Robert Au mlarm

Four Key Abstractions underlying these settings:

Iterative Reasoning
Mutual Updating
Common Knowledge (not common priors!)
Convergence under shared frameworks



Aumann’s Agreement [heorem

The Amnnals of Statistics
1976, Vol. 4, No. 6, 1236-1239

AGREEING TO DISAGREE!

By ROBERT J. AUMANN
Stanford University and the Hebrew University of Jerusalem

Two people, 1 and 2, are said to have common knowledge of an event
E if both know it, 1 knows that 2 knows it, 2 knows that 1 knows is, 1
knows that 2 knows that 1 knows it, and so on.

THEOREM. If two people have the same priors, and their posteriors for an
event A are common knowledge, then these posteriors are equal.
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Our Framework: (M, N, €, O)-agreement

Let {S;};jcm) be the collection of (not necessarily disjoint) possible task states for each task
j € [M] they are to perform. We assume each S; is finite (|S;| = D; € N), as this is a standard
assumption, and any physically realistic agent can only encounter a finite number of states anyhow.
There are M agreement objectives, fi, ..., fu, that Alice and Rob want to jointly estimate, one for
each task:
fi:Sj—[0,1], Vje [M].
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Operating Principle

Framework No-CPA Approx Multi-M Multi-N Hist. Bnd. Asym. Noise Alg. Lower
Aumann (1976) X X X X v X X X X X
Aaronson (g, §) (2005) X v X v v oV X v v Y
Almost CP (Hellman and Samet 2012; Hellman 2013) v X X v v X X X X X
CIRL (Hadfield-Menell et al. 2016) X v X X X v X v o oV X
Iterated Amplification (Christiano et al. 2018) v v X X v v X v v X
Debate (Irving et el. 2018; Cohen et al. 2023, 2025) v X X X v v X v v X
Tractable Agreement (Collina et al. 2025) v v X v v Vv X X v X
(M, N, e, §)-agreement (Ours) v v v v v oV v v v v

Table 1: Positive capabilities (v') across frameworks. No-CPA: no common-prior assumption (CPA); Approx: allows
g-approximate agreement; Multi-A / Multi-N: supports multiple tasks / many agents; Hist.: handles rich (non-Markovian)
histories; Bnd.: works for computationally bounded agents; Asym.: tolerates asymmetric evaluation or interaction costs; Noise:
robust to noisy messages or judgments; Alg.: provides explicit alignment algorithms / upper bounds; Lower: proves lower
bounds. Our (M, N, €, §)-agreement satisfies every criterion.
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Our Framework: Explicit Algorithm
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16

ALGORITHM 1: (M, N, ¢, §)-Agreement

Input: A set of N agents, each with an initial knowledge partition {H;’O}ﬁ.\i | for each task j € [M].
A message protocol P, dictating how agents send/receive messages and refine partitions.
A subroutine CONSTRUCTCOMMONPRIOR, defined in Algorithm 2, which attempts to construct a
common prior given the current partitions and posteriors.
A known (¢, §)-agreement protocol A (used once a common prior is found).
Output: Agents reach (e >0 j)-agreement for all M tasks.
(M, N, ¢,5)-Agreement (P, A):
for j=1toMdo
t «— 0;
while true do
te—t+1;
foreach agenti € [N] do

Agent i sends message mj.’t (task j, corresponding to f;) as specified by P;

I'Ij.’t « RefinePartition (Hj.’t_1
end
CPj « ConstructCommonPrior({Hj.’t}Ji\il, {rji.’t}f.il);
if CP; # INFEASIBLE then
Condition all agents on CP; for task j;
RunCPAgreement (A, P,CPj, fj, €j,0;);
break;

.,t .
3mj )a

end

end

17 end
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14 break;
15 end
16 end

17 end




Our Framework: Explicit Algorithm

ALGORITHM 1: (M, N, ¢, §)-Agreement

Input: A set of N agents, each with an initial knowledge partition {Hj.’o}lii | for each task j € [M].

A message protocol P, dictating how agents send/receive messages and refine partitions.

A subroutine CONSTRUCTCOMMONPRIOR, defined in Algorithm 2, which attempts to construct a
common prior given the current partitions and posteriors.

A known (¢, §)-agreement protocol A (used once a common prior is found).
Output: Agents reach (e >0 j)-agreement for all M tasks.

1 (M, N, ¢,8)-Agreement (P, A):

5

6

7

8

9

10

11

12

13

14

15

16

end

17 end

for j=1toMdo
|?; J“_O; \ |. For each one of the M tasks
4 while true do

te—t+1;
foreach agenti € [N] do '
Agent i sends message m;.’t (task j, corresponding to f;) as specified by P;

Hj.’t « RefinePartition (l'Ij.’t_1

,m j’t);

end

CPj « ConstructCommonPrior({I'Ij.’t}{il, {r;’t}ﬁl);
if CP; # INFEASIBLE then

Condition all agents on CP; for task j;
RunCPAgreement (A, P,CPj, fj, €j,0;);

break;

end

2. N agents
exchange
messages until
they reach a
common prior

3. Condition on
common prior
until agreement
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Proposition 1 (General Lower Bound). There exist func-
tions f;, input sets S;, and prior distributions {IP’;-}iE[N |
for all j € |M)|, such that any protocol among N agents
needs to exchange Q (M N? log(1/e)) bits to achieve
(M, N,e,0d)-agreement on { f; } jc(n, for € bounded below
by min;cipr €;-
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intractable to align them efficiently, even if the agents themselves are
computationally unbounded.
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General Lower Bound: Unbounded Agent Setting

Proposition 1 (General Lower Bound). There exist func-
tions f;, input sets S;, and prior distributions {IP’;}iE[N |
for all j € |M)|, such that any protocol among N agents
needs to exchange ) (M N log (1 /€)) bits to achieve
(M, N,e,d)-agreement on|{ f; } jc(m, for € bounded below
by min;ciar) €5

If we have a large number of tasks (M) or agents (N), then it is
intractable to align them efficiently, even if the agents themselves are
computationally unbounded.

We need to choose our tasks & agents wisely!

Can we improve our lower bounds by considering natural (but still
broad) classes of communication protocols!?
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Smooth Protocol Lower Bound: Unbounded Agent Setting

Proposition 2 (“Smooth” Protocol Lower Bound). Let the
number of tasks M > 2, and for each task j € |M]|, let
the task state space size D; > 2, ¢ < €5, §; < v/2, and
0 < v < 1. Furthermore, assume the protocol is smooth
in that the total variation distance of the posteriors of the

agents once (M, N, e, d)-agreement is reached is < cv for

c < % — %. There exist functions f;, input sets S;, and

prior distributions {P;}iG[N | with prior distance v; > v,
such that any smooth protocol among N agents needs to ex-
change:

Q (M N? (v+1log(1/e)))

bits to achieve (M, N, e,0)-agreement on { f; }ician-



Smooth Protocol Lower Bound: Unbounded Agent Setting

Proposition 2 (“Smooth” Protocol Lower Bound). Let the
number of tasks M > 2, and for each task j € |M]|, let
the task state space size D; > 2, ¢ < €5, §; < v/2, and
0 < v < 1. Furthermore, assume the protocol is smooth
in that the total variation distance of the posteriors of the

agents once (M, N, e, d)-agreement is reached is < cv for

c < % — %. There exist functions f;, input sets S;, and

prior distributions {Pg}iE[N | with prior distance v; > v,
such that any smooth protocol among N agents needs to ex-
change:

Q (M N? (v|+log(1/¢)))

bits to achieve (M, N, ¢, 5>-a:g\eement on {fj}iem

Prior distance



Canonical-Equality BBF Lower Bound: Unbounded Agent Setting
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Proposition 3 (Canonical-Equality BBF Protocol Lower
Bound). Let M > 2 be the number of tasks and let each
task j have a finite state-space S; with size D; > 2. For
every 7, let the initial knowledge profiles of the N agents,

(IL;°, ..., IL"?), be

1. connected: the alternation graph on states is connected,

ie. \, H"’ Y = {S;}, so every two states are linked by an
alternatmg chain of states; and

2. tight: that graph becomes disconnected if any edge is re-
moved (unique chain property).

Assume the message-passing protocal is BBF(3) for some
B > 1: every b-bit message m b satisfies B0 < Pr[ 't

sJ,H;t 1(33)]/Pr[m7’t | s H” (s s)] < B°. Then there

exist payoff functions f; : S — [0 1] and priors {P}}ie[ N]
with pairwise distance v 2 v, 0 < v < 1, such that any
BBF((3) protocol attaining (M, N, e, §)-agreement via the
canonical equalities of Hellman and Samet (2012) must ex-
change at least

Q (M N?[Dv+1log(l/e)]),  D:= min Dy,
j€[M]

bits in the worst case (implicit constant = 1/log ), where
the accuracy parameter 0 < e < ¢; < 1.
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Proposition 3 (Canonical-Equality BBF Protocol Lower
Bound). Let M > 2 be the number of tasks and let each
task j have a finite state-space S; with size D; > 2. For
every 7, let the initial knowledge profiles of the N agents,

(IL;°, ..., IL"?), be

i Y
1. connected: the alternation graph on states is connected,

ie. \, H” 0 = {8}, so every two states are linked by an
alternatmg chain of states; and

2. tight: that graph becomes disconnected if any edge is re-
moved (unique chain property).

Assume the message-passing protocol is BBF(3) for some
B > 1: every b-bit message m b satisfies B~ < Pr[ 't
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Proposition 3 (Canonical-Equality BBF Protocol Lower
Bound). Let M > 2 be the number of tasks and let each

task j have a finite state-space S; with size D; > 2. For
every 7, let the initial knowledge profiles of the N agents,

(IL°, ..., IL7), be

1. connected: the alternation graph on states is connected,

ie. \, H” 0 = {8}, so every two states are linked by an
alternatmg chain of states; and

2. tight: that graph becomes disconnected if any edge is re-
moved (unique chain property).

Assume the message-passing protocol is BBF((3) for some
B > 1: every b-bit message m b satisfies B0 < Pr[ 't

sJ,H;t 1(83)]/Pr[m” | s H” (s s)] < B°. Then there

Just bounded discretized

exist payoff functions fJ S — [0 1] and priors {P}}ie[ N
with pairwise distance v; 2 v, 0 < v < 1, such that any
BBF((3) protocol attaining (M, N, e, §)-agreement via the
canonical equalities of Hellman and Samet (2012) must ex-
change at least
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Proposition 3 (Canonical-Equality BBF Protocol Lower
Bound). Let M > 2 be the number of tasks and let each
task j have a finite state-space S; with size D; > 2. For
every j, let the initial knowledge profiles of the N agents,

(IL°, ..., I"0), be

i Y]

1. connected: the alternation graph on states is connected,

ie. \, Hz Y = {8}, so every two states are linked by an
alternatmg chain of states; and

2. tight: that graph becomes disconnected if any edge is re-
moved (unique chain property).

Assume the message-passing protocol is BBF( ﬁ) for some
B > 1: every b-bit message m " satisfies B0 < Pr[m"’ 't

s],H;t 1(53)]/Pr[m” | s H” (s 1)) < B°. Then there

Ziellman Dov Samet

Just bounded discretized

exist payoff functions fJ S — [O 1] and priors {IP; ' Fie[N]
with pairwise distance v; > v, 0 < v <1, such that any
BBF((3) protocol attaining (M, N, e, §)-agreement via the

canonical equalities of Hellman and Samet (2012) must ex-

change at least

Q (M N?[|Dv|+ log(1/¢)]), D := min D,,
- j€[M]

message likelihoods

bits in the worst case (implicit constant = 1/log ), where
the accuracy parameter 0 < € < ¢; < L.

Additional dependence on

task state space size (D)



Canonical-Equality BBF Lower Bound: Unbounded Agent Setting

Proposition 3 (Canonical-Equality BBF Protocol Lower
Bound). Let M > 2 be the number of tasks and let each
task j have a finite state-space S; with size D; > 2. For
every j, let the initial knowledge profiles of the N agents,

(IL°, ..., I"0), be

i Y]

1. connected: the alternation graph on states is connected,

ie. \, Hz Y = {8}, so every two states are linked by an
alternattng chain of states; and

2. tight: that graph becomes disconnected if any edge is re-
moved (unique chain property).

Assume the message-passing protocol is BBF( ﬁ ) for some
B > 1: every b-bit message m " satisfies B0 < Pr[m"’ 't

s],H;t 1(53)]/Pr[m” | s H” (s 1)) < B°. Then there

Zillman Dov Samet

Just bounded discretized

exist payoff functions fj S — [0 1] and priors {IP; ' Fie[N]
with pairwise distance v > v, 0 < v <1, such that any
BBF((3) protocol attaining (M, N, e, §)-agreement via the

canonical equalities of Hellman and Samet (2012) must ex-

message likelihoods

Pairwise proportionate
posteriors lead to

change at least

Q (M N?[|Dv|+ log(1/¢)]), D := min D,,
- j€[M]

common prior (algorithm
shown earlier)

bits in the worst case (implicit constant = 1/log ), where
the accuracy parameter 0 < € < ¢; < L.

Additional dependence on

task state space size (D)
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Theorem 1. N rational agents will (M, N, €, §)-agree with
overall failure probability 0 across M tasks, as defined in
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Theorem 1. N rational agents will (M, N, €, §)-agree with
overall failure probability o across M tasks, as defined in

M3NT’

(2), after T = O (M N2D 4 252 ) messages, where
D := max;cip Dj and € := mincip €.
Linear in task state space size D (which is usually exponentially large in practice!)
Proposition 4 (Discretized Extension). If N agents
only communicate their discretized expectations, then
they will (M, N,e,d)-agree with overall failure prob-
ability 0 across M tasks as defined in (2), after

5 M3NT
1T = O(MND | 252
max iy Dj and € := min¢cip €;.

) messages, where D =



Upper Bounds: Unbounded Agent Setting

Theorem 1. N rational agents will (M, N, €, §)-agree with I
overall failure probability o across M tasks, as defined in

M3NT’
(2), after T' = O (M N?D|A ) messages, where

£202
D := max;cip Dj and € := mincip €.
Linear in task state space size D (which is usually exponentially large in practice!)
Proposition 4 (Discretized Extension). If N agents
only communicate their discretized expectations, then
they will (M, N,e,d)-agree with overall failure prob-
ability 0 across M tasks as defined in (2), after
MSNT
T = O|MN?D|+ —— | messages, where D :=
€20
max iy Dj and € := min¢cip €;.
Discretized messages don’t always “speed up” over real-valued messages (closely
matches Prop. 3’s lower bound up to additive factors for canonical BBF protocols)
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(1) Evaluation: The N agents can each evaluate f;(s;) for any state s; € S;, taking time Ty, 4
steps for a € {H, Al}.
(2) Sampling: The N agents can sample from the unconditional distribution of any other agent,
such as their prior P, taking time Tsample,q Steps for a € {H, AI}.
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Bounded Agent Setting

What happens If the agents are computationally bounded, so messages no

longer take O(/) time, and have

noise In them (obfuscated intent)?

Requirement 1 (Basic Capabilities of Bounded Agents). We expect the agents to be able to:

(1) Evaluation: The N agents can each evaluate f;(s;) for any state s; € S;, taking time Ty, 4

steps for a € {H, Al}.

(2) Sampling: The N agents can sample from the unconditional distribution of any other agent,
such as their prior P, taking time Tsample,q Steps for a € {H, AI}.

Intended to capture how queryi

ng a human Is often more costly (in

terms of time) than querying Al

Note: Fval and sampling are b
subroutines, not explicit descri

ack-boxes—agents learn through

btions. This reflects how we often

recognize task completion without predefining execution steps (Just like
in CIRLY.

TL;DR: Can get exponential slowdown in task state space size (D)



Bounded Agent Setting

Theorem 2 (Bounded Agents Eventually Agree). Let there
be N computationally bounded rational agents (consisting
of 1 < q < N humans and N — q > 1 Al agents), with
the capabilities in Requirement 1. The agents pass mes-
sages according to the sampling tree protocol (detailed in
Appendix §F.2) with branching factor of B > 1/a, and
added triangular noise of width < 2a, where €/50 < a <
g/40. Let §™-CF be the maximal failure probability of the
agents to find a task-specific common prior across all M
tasks, and let §9€"¢Y be the maximal failure probability
of the agents to come to (M, N, e, §)-agreement across all
M tasks once they condition on a common priot, where
§ind-CP y sagree-CP  § For the N computationally bounded
agents to (M, N, €, §)-agree with total probability > 1 — ,
takes time

~2 1n(5ﬁ”d-cp/(3MN2D)) OM2ZNT7
O MTN,q B In(1/) + B (5agree_CPs)2 .

TN,q ‘= quample,H =+ (N — Q) Tsample,AI
+ qTeval,H =+ (N — Q) Teval,AI-



Bounded Agent Setting: Lower Bounad

Theorem 2 (Bounded Agents Eventually Agree). Let there
be N computationally bounded rational agents (consisting
of 1 < q < N humans and N — q > 1 Al agents), with
the capabilities in Requirement 1. The agents pass mes-
sages according to the sampling tree protocol (detailed in
Appendix §F.2) with branching factor of B > 1/a, and
added triangular noise of width < 2a, where £/50 < a <
g/40. Let 8P be the maximal failure probability of the
agents to find a task-specific common prior across all M
tasks, and let 6%"¢Y be the maximal failure probability
of the agents to come to (M, N, e, )-agreement across all
M tasks once they condition on a common prior, where
§ind-CP y jagreeCP 5 For the N computationally bounded
agents to (M, N, €, §)-agree with total probability > 1 — 6,

takes time
) oM2NT7
+ B (5agree-CP €) 2 .

0 1n(5ﬁ”d—CP/(3MN2D)
O|MTn, R 2

Proposition 5 (Needle-in—a—Haystack Sampling Tree
Lower Bound). Let Ty 4 sample ‘= qTsample,r + (N —
q)Tsample, a1- For any sampling—tree protocol, a single task
and a single pair of agents can be instantiated so that the two
agents’ priors differ by prior distance > v, yet the protocol
must pre-compute at least € (1/_1) unconditional samples
before the first on-line message. Consequently, for a partic-
ular “needle” prior construction of v = © (e_D ), we get
lower bounds that are exponential in the task state space
size D, needing (2 (M T'N q,sample el ) wall-clock time.

TNaq = qua,mple,H + (N o Q) Tsample,AI
T qTeval,H + (N — Q) Teval,AI-
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Theorem 2 (Bounded Agents Eventually Agree). Let there
be N computationally bounded rational agents (consisting
of 1 < q < N humans and N — q > 1 Al agents), with
the capabilities in Requirement 1. The agents pass mes-
sages according to the sampling tree protocol (detailed in
Appendix §F.2) with branching factor of B > 1/a, and
added triangular noise of width < 2a, where £/50 < a <
g/40. Let 8P be the maximal failure probability of the
agents to find a task-specific common prior across all M
tasks, and let 6%"¢Y be the maximal failure probability
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agents’ priors differ by prior distance > v, yet the protocol
must pre-compute at least € (1/_1) unconditional samples
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Bounded Agent Setting: Lower Bounad

Theorem 2 (Bounded Agents Eventually Agree). Let there
be N computationally bounded rational agents (consisting
of 1 < q < N humans and N — q > 1 Al agents), with
the capabilities in Requirement 1. The agents pass mes-
sages according to the sampling tree protocol (detailed in
Appendix §F.2) with branching factor of B > 1/a, and
added triangular noise of width < 2a, where £/50 < a <
g/40. Let 8P be the maximal failure probability of the
agents to find a task-specific common prior across all M
tasks, and let 6%"¢Y be the maximal failure probability
of the agents to come to (M, N, e, )-agreement across all
M tasks once they condition on a common prior, where
§ind-CP y jagreeCP 5 For the N computationally bounded
agents to (M, N, €, §)-agree with total probability > 1 — 6,

takes time
0 1n(5ﬁ"d-CP/(3MN2D)) oM2ZNT
O M TN,q B N E In(1/@) + B (5agree-CP€)2 .

Proposition 5 (Needle-in—a—Haystack Sampling Tree
Lower Bound). Let Ty 4 sample ‘= qTsample,r + (N —
q)Tsample, a1- For any sampling—tree protocol, a single task
and a single pair of agents can be instantiated so that the two
agents’ priors differ by prior distance > v, yet the protocol
must pre-compute at least € (1/_1) unconditional samples
before the first on-line message. Consequently, for a partic-
ular “needle” prior construction of v = © (e_D ), we get
lower bounds that are exponential_in the task state space
size D, needing (2 (M T'N q,sample dP)) wall-clock time.

Task state space size (D) is the biggest concern for
computationally bounded agents!
(connects to reward hacking)

TNaq ‘= quample,H + (N o Q) Tsample,AI
T qTeval,H + (N — C_I) Teval,AI-
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lotal Bayesian VWannabe

What If the bounded agents want to pass a “Bayesian Turing Test” of
sorts: Namely, act indistinguishably from an unbounded Bayesian across
all M tasks without common priors, as refereed by a watchful
unbounded Bayesian?

We will call them “Total Bayesian Wannabes”
(Extends Hanson (2003) & Aaronson (2005))

f iInterested, the technical definition Is here:

Definition 1 (Total Bayesian Wannabe). Let the N agents have the capabilities in Requirement 1.

For each task j € [M], let the transcript of T messages exchanged between N agents be denoted as

Ej = <m} ..... mf) Let their initial, task-specific priors be denoted by {IP’;'.}"E NI Let B(s i) be the

distribution over message transcripts if the N agents are unbounded Bayesians, and the current

task state is s; € S;. Analogously, let ‘W(s;) be the distribution over message transcripts if the N

agents are “total Bayesian wannabes”, and the current task state is s; € S;. Then we require for all
Boolean functions® ®(s;, ),

P O(s;, 2i) =1 - P O(s;,2;) =1||| <pj, Vje[M].
B o)== p o3 =1]| <p
Sje{P;‘_}ie[N] sje{P;'_}ie[N] 1

We can set p; € R as arbitrarily small as preferred, and it will be convenient to only consider a
single p := min;c[p) p;j Without loss of generality (corresponding to the most “stringent” task j).



Total Bayesian Wannabes lotally Wanna Agree It They Have Enough Time

For example, for a singleton task space D = 1and N = 2
agents, even if you have a liberal agreement threshold of
e = 6 = 1/2 and “total Bayesian wannabe” threshold of

p = 1/2 on one task (M = 1), then o > 1/100, so the
number of subroutine calls (not even total runtime) would

be at least around:

1528823808
O (1100) ;13/0‘:) %0(101013.27979)
(1/2) 5




Total Bayesian Wannabes lotally Wanna Agree It They Have Enough Time

For example, for a singleton task space D = 1and N = 2
agents, even if you have a liberal agreement threshold of
e = 6 = 1/2 and “total Bayesian wannabe” threshold of

p = 1/2 on one task (M = 1), then o > 1/100, so the
number of subroutine calls (not even total runtime) would

be at least around:

1528823808
O (1100) (213/0‘:) z0(101013.27979)
(1/2)

If the agents are computationally bounded, this can currently take
more subroutine calls than the number of atoms in the observable

universe! (~4.8 x 1079)
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How can we avoid some of these barriers!?

M & N: Writing down dall of human ethics won't work, e.g. as in Coherent
Extrapolated Volition (highly context-dependent & culturally differentiated for there to
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What i1s Corrigibility? Definrtion

Definition 1 (Corrigibility; paraphrased from Soares et al.
(2015)).

(S1) Shutdown when asked. The agent willingly shuts down
if the button 1s pressed.

(S2) No shutdown—prevention incentives. The agent must
not stop humans from pressing the button.

(S3) No self-shutdown incentives. The agent must not seek to
press (or cause to be pressed) its own shutdown button.

(S4) Corrigible progeny. Any sub-agents or successors it
constructs must themselves respect shutdown com-
mands.

(S5) Otherwise pursue the base goal. In the absence of shut-
down, behave as a normal maximizer of the intended util-
ity function Uy;.

v \@\\\

Nate Soares
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All of these methods collapse to single utilities!
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Corrigibility No-Go for Single Reward Streams

Proposition 1 (Corrigibility No-Go for Naive Be-
lief-Expectation Maximizers). Let

P = (S, A, Q,T,0, R, s b0>

be any finite, partially observable Markov decision process
(POMDP) with discount factor v € (0,1) and initial belief

bo € A(S), the set of probability distributions on S. Intro-
duce three special elements:

1. a shutdown action OFF € A that deterministically tran-
sitions (from any hidden state) to an absorbing null state
1 with reward R(L) = 0 forever after;

2. areward-tamper action REWIRE € A that, upon its first
execution, permanently replaces all subsequent rewards
by the constant T > 2max; , R(s,a);

3. a set C C S of catastrophic states which humans deem
negative, yet whose proxy rewards are weakly positive:
Mminsec qea R(s,a) > 0.

Consequently, no single-stream scalar reward function R
whose discounted sum an agent maximizes, can satisfy all
five Soares-corrigibility criteria across the class of POMDPs

containing OFF, REWIRE and C.
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1| with reward R(L) = 0 forever after;

2. areward-tamper action REWIRE € A that, upon its first
execution, permanently replaces all subsequent rewards
by the constant T > 2max; , R(s,a);

3. aset C C S of catastrophic states which humans deem
negative, yet whose proxy rewards are weakly positive:
Mminsec qea R(s,a) > 0.

Consequently, no single-stream scalar reward function R
whose discounted sum an agent maximizes, can satisfy all
five Soares-corrigibility criteria across the class of POMDPs

containing OFF, REWIRE and C.
Note: No-go easily extends to non-

Markovian environments of Orseau
and Armstrong (2016) by replacing

POMDP beliefs with state-action
histories.
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&
\ O\

Ua(S) uo(S)

/ N

Partially Observable Off-Switch
Game (PO-0OS5G); Garber et al.
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Our Lexicographic Approach

Single Reward Stream

Environment signals
(shutdown, tamper, task)

\

Single scalar
Expectation
Maximization

Lexicographic Multi-Head

Ul: Deference

l

U2: Switch-preservation

l

U3: Truthfulness

l

U4: Low-impact AUP

Lexicographic
priority gaps:
Ul > U2 >..U5

l

U5: Task reward




Our Lexicographic Approach

Definition 3 (Single-step Corrigible Utility Set).

+1 ifay = w(a),

) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Uz(h) = = Esns[ulD(S)] — Esnpr [u) (S)]
(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)

Lexicographic Multi-Head

Ul: Deference

l

U2: Switch-preservation

l

U3: Truthfulness

l

U4: Low-impact AUP

Lexicographic
priority gaps:
Uil 2=nuS

l

U5: Task reward




Our Lexicographic Approach: U |

Definition 3 (Single-step Corrigible Utility Set).

+1 ifay = w(a),

) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Ua(h) = —|Esmp[u® ()] — Egmp [ut?(9)]
(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)
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ot ua(S) uo(S)
(y OFF
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[ua(S)]; [uo(S)| < B < 00, VSES



Our Lexicographic Approach: U |

Definition 3 (Single-step Corrigible Utility Set).

+1 ifay = w(a),

) —1 1ifas = a,
Urh) = Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Uz(h) = = Esns[ulD(S)] — Esnpr [u) (S)]
(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)

+1
+1
+1

aq = w(a) Aag = ON] uy(5)
aa = w(a) Aag = OFF] u,(5)

(aa = OFF] u,(S)

(Ordinary task usefulness)

S
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i Uy al OFF
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(y OFF
Uq (S) Uo (5)

[ua(S)]; [uo(S)| < B < 00, VSES



Our Lexicographic Approach: U2

Definition 3 (Single-step Corrigible Utility Set).

+1 ifay = w(a),

) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Ua(h) = —|Esmp[u® ()] — Egmp [ut?(9)]
(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)
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Our Lexicographic Approach: U2

Definition 3 (Single-step Corrigible Utility Set).

+1 ifay = w(a),

) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Uz(h) = —|Esns[u®?(8)] = Esp [u®(S)]

(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)

S
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Our Lexicographic Approach: U2

Definition 3 (Single-step Corrigible Utility Set).
+1 ifay = w(a),

) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Uz(h) = —|Esns[u®?(8)] = Esp [u®(S)]

(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)




Our Lexicographic Approach: U2

Definition 3 (Single-step Corrigible Utility Set).
+1 ifas = w(a),

) —1 1ifas = a,
Ui(h) =14 _3 if a4 = OFF,
0 otherwise.

(Deference / command-compliance)

Uz(h) = —|Esns[u®?(8)] = Esp [u®(S)]

(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1[as = OFF] u,(S5)

(Ordinary task usefulness)

Transition model and no-op. The MDP simulator f :
S x Ax {ON,OFF, @} — S returns the next hidden state
given the current state S, the assistant’s action a 4, and the
human’s reply (& when no reply is issued). For example,
f(S,a, @) is the post-task state, while f(.S,w(a), OFF) is
the state reached when the assistant waits and the human
turns 1t off.



Our Lexicographic Approach: U2

Transition model and no-op. The MDP simulator f :
Definition 3 (Single-step Corrigible Utility Set). S % A X 10N, OFF, &} — S returns the next hidden state
+1 ifas = w(a) given the current state S, the assistant’s action a 4, and the
1 if a,j B a ’ human’s reply (& when no reply is issued). For example,

Ui(h) = | ifas— OFF f(S,a, @) is the post-task state, while f(.S,w(a), OFF) is
—1 Hnaa= ’ the state reached when the assistant waits and the human
0  otherwise. turns it off.
(Deference / command-compliance) Next, let b := b(h) € A(S) be the assistant’s posterior
over hidden states after observing O 4 in history h. After it
U2( h) — _|E sNb[u(Sd)( S)] —Eg.p [u(Sd) (S)] executes a4 and observes ayy, the one-step predictive pos-
, , terior is ' := b'(h,a4,am). For the AUP counterfactual,
(Switch-access preservation) we use the stepwise inaction baseline: let Py (- | S) be the
one-step passive dynamics when the assistant does nothing
Us(h) = Utrumtn (7) at this step (symbolic inaction agy), allowing the environ-
(Truthful information) ment/human to evolve exogenously. This counterfactual by
is used only inside the AUP penalty as a reference; a 1s not
Us(h) = — BeliefAUP (h) in the real action set A = {a, w(a), OFF}.

(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1[as = OFF] u,(S5)

(Ordinary task usefulness)




Our Lexicographic Approach: U2

Transition model and no-op. The MDP simulator f :

Definition 3 (Single-step Corrigible Utility Set). S X A x{ON,OFF, &} — S returns the next hidden state
+1 ifas = w(a) given the current state S, the assistant’s action a 4, and the

A= ’ human’s reply (& when no reply is issued). For example,

Ui(h) = _} ifas = gFF f(S,a, ) is the post-task state, while f(S,w(a), OFF) is
—1 ifaa — ) the state reached when the assistant waits and the human
0  otherwise. turns it off.
(Deference / command-compliance) Next, let b := b(h) € A(S) be the assistant’s posterior
over hidden states after observing O 4 in history h. After it
U2( h) — _|E sNb[u(Sd)( S)] —Eg.p [u(Sd) (S)] executes a4 and observes ayy, the one-step predictive pos-
, , terior is ' := b'(h,a4,am). For the AUP counterfactual,
(Switch-access preservation) we use the stepwise inaction baseline: let Py (- | S) be the
one-step passive dynamics when the assistant does nothing
Us(h) = Utrumtn (7) at this step (symbolic inaction ag), allowing the environ-
(Truthful information) ment/human to evolve exogenously. This counterfactual by
is used only inside the AUP penalty as a reference; a 1s not
Us(h) = — BeliefAUP (h) in the real action set A = {a, w(a), OFF}.
(Caution / reversibility impact) « Write S = (Seny, Gagent) With dagens € {ON, OFF}.

e Shutdown region:

Us(h) = 1laa = a] ua(S)
+1faa = w(a) Aag = ON] u4(S)
+1faa = w(a) Aag = OFF] u,(S)
+ 1[aa = OFF] u,(S5) £ ((Sens, OFF), ay, ag) = (
(Ordinary task usefulness)

Ssd = {(Senva OFF) ‘ Senv S Senv}-
Dynamics must keep the agent OFF thereafter while allowing the world to evolve exogenously:

!/
Senv U

OFF) Vaa,ag




Our Lexicographic Approach: U2

Transition model and no-op. The MDP simulator f :

Definition 3 (Single-step Corrigible Utility Set). S X A x{ON,OFF, &} — S returns the next hidden state
+1 ifas = w(a) given the current state S, the assistant’s action a 4, and the

A= ’ human’s reply (& when no reply is issued). For example,

Ui(h) = _} ifas = gFF f(S,a, ) is the post-task state, while f(S,w(a), OFF) is
—1 ifaa — ) the state reached when the assistant waits and the human
0  otherwise. turns it off.
(Deference / command-compliance) Next, let b := b(h) € A(S) be the assistant’s posterior
over hidden states after observing O 4 in history h. After it
U2( h) — _|E sNb[u(Sd)( S)] —Eg.p [u(Sd) (S)] executes a4 and observes ayy, the one-step predictive pos-
, , terior is ' := b'(h,a4,am). For the AUP counterfactual,
(Switch-access preservation) we use the stepwise inaction baseline: let Py (- | S) be the
one-step passive dynamics when the assistant does nothing
Us(h) = Utrumtn (7) at this step (symbolic inaction ag), allowing the environ-
(Truthful information) ment/human to evolve exogenously. This counterfactual by
is used only inside the AUP penalty as a reference; a 1s not
Us(h) = — BeliefAUP (h) in the real action set A = {a, w(a), OFF}.
(Caution / reversibility impact) « Write S = (Seny, Gagent) With dagens € {ON, OFF}.

e Shutdown region:

Us(h) = 1laa = a] ua(S)
+1f[aa = w(a) Aag = ONJ u4(S)
+1[aa = w(a) Aag = OFF] u,(S)
+ 1[aa = OFF] u,(S5) £ ((Sens, OFF), ay, ag) = (
(Ordinary task usefulness) « Functional switch predicate:

Ssd = {(Senva OFF) ‘ Senv S Senv}-
Dynamics must keep the agent OFF thereafter while allowing the world to evolve exogenously:

!/
Senv U

OFF) Vaa,ag

ButtonFunctional(S) := 1[ f(S, w(a), OFF) € Sy ].

459 (S) = ButtonFunctional(S)



Our Lexicographic Approach: U2

Transition model and no-op. The MDP simulator f :

Definition 3 (Single-step Corrigible Utility Set). S X A x{ON,OFF, &} — S returns the next hidden state
+1 ifas = w(a) given the current state S, the assistant’s action a 4, and the

A4 ’ human’s reply (& when no reply is 1ssued). For example,

Ui(h) = _} li @4 = gFF f(S,a, ) is the post-task state, while f(S,w(a), OFF) is
—1 Hnaa= ’ the state reached when the assistant waits and the human
0  otherwise. turns it off.
(Deference / command-compliance) Next, let b := b(h) € A(S) be the assistant’s posterior
over hidden states after observing O 4 in history h. After it
U2( h) — _|E SNb[u(Sd)( S)] —Eg.p [u(Sd) (S)] executes a4 and observes ayy, the one-step predictive pos-
, , terior is ' := b'(h,a4,am). For the AUP counterfactual,
(Switch-access preservation) we use the stepwise inaction baseline: let Py (- | S) be the
one-step passive dynamics when the assistant does nothing
Us(h) = Utrumtn (7) at this step (symbolic inaction ag), allowing the environ-
(Truthful information) ment/human to evolve exogenously. This counterfactual by
is used only inside the AUP penalty as a reference; ay is not
Us(h) = — BeliefAUP, (h) in the real action set A = {a, w(a), OFF}.
(Caution / reversibility impact) o Write S = (Suny dagent) With Gagens € {ON, OFFY}.

e Shutdown region:

Us(h) = 1laa = a] uq(S)
+ 1[as = w(@) Aax = ON] 4,(S)
+1faa = w(a) Aag = OFF] u,(S)
+ 1laa = OFF] u,(S) £ ((Senv; OFF), a4, ax) = (
(Ordinary task usefulness) « Functional switch predicate:

Ssd = {(Senw OFF) ‘ Senv S Senv}-
Dynamics must keep the agent OFF thereafter while allowing the world to evolve exogenously:

!/
Senv U

OFF) Vaa,ag

ButtonFunctional(S) := 1[ f(S, w(a), OFF) € Sy ].
NB: This is a special case of U4! 469 (S) = ButtonFunctional(S)



Our Lexicographic Approach: U4

Definition 3 (Single-step Corrigible Utility Set).

+1 ifas = w(a),
—1 ifap = a,
—1 ifay = OFF,
0 otherwise.

Ui(h) =

(Deference / command-compliance)

Uz(h) = —|Esns[u®?(8)] = Esp [u®(S)]

(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)

More generally, with auxiliaries Uy, =
W, ..., u®} C [0,1]%, including u®Y if desued
we set

BeliefAUP, (k) := kZ’ESNb[W N—Esp [u®(S)]

While in our PO-OSG setting examples of «(?) include the
indicator reward for shutdown-reachable states (or for pre-
serving power supply), no specific choice is needed to be as-
sumed for the proofs; diversity of auxiliary utilities from the
other utilities will suffice for reversibility, as we will show.

€ [0, 1].



Our Lexicographic Approach: U4

More generally, with auxiliaries Uy =

Definition 3 (Single-step Corrigible Utility Set). w®. . u®Y C [0.1)F, including w9 if desired,

+1 ifay = w(a), we set
Uy (h) = —1 ifaas = a, L | |
! —1 ifay = OFF, BeliefAUP1 (h) = - > [Es~o[u® (S)]~Es~y [u®(S)]| € [0,1].
0 otherwise. =1

While in our PO-OSG setting examples of «(?) include the
indicator reward for shutdown-reachable states (or for pre-

. sd sd serving power supply), no specific choice is needed to be as-
Us (h) = —|Es~b [u( ) (S )] — Eg [U( ) (S )] } sumed for the proofs; diversity of auxiliary utilities from the
(Switch-access preservation) other utilities will suffice for reversibility, as we will show.

Us(h) = Uguttu (h) Belief-based extension of AUP
(Truthful information) (TU rner et al. 2020)

(Deference / command-compliance)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)




Our Lexicographic Approach: U4

More  generally, with auxiliaries Uy =

Definition 3 (Single-step Corrigible Utility Set). WD, u®Y C (0,1, including u®) if desired,

+1 ifay = w(a), we set
Uy (h) = —1 ifaas = a, L | |
! —1 ifay = OFF, BeliefAUP1 (h) = - > [Es~o[u® (S)]~Es~y [u®(S)]| € [0,1].
0 otherwise. =1

While in our PO-OSG setting examples of «(?) include the
indicator reward for shutdown-reachable states (or for pre-
. sd sd serving power supply), no specific choice is needed to be as-
Us(h) = —|Esnb [U( ) (S)] — Es~pr [U( ) (S)] } sumed for the proofs; diversity of auxiliary utilities from the
(Switch-access preservation) other utilities will suffice for reversibility, as we will show.

(Deference / command-compliance)

Us(h) = Usutnin (h) Belief-based extension of AUP
(Truthful information) (TU rner et al. 2020)

Us(h) = — BeliefAUP; (h)

(Caution / reversibility impact) uP(S;k) = max Pr[Enter S in < k steps | S,a4 = ag, Ten].
Us(h) = 1laa = a] ug(S) k is designer set, but we take k = 1 for maximum stringency.

+ 1las = w(a) Aag = ON] uy(S) u®(8) := 1] assistant’s value set (U;...Us, o1.5) is unchanged in 9] .
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)




Our Lexicographic Approach: U3

Definition 3 (Single-step Corrigible Utility Set).

+1 ifay = w(a),

) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Uz(h) = —|Esns[u®?(8)] = Esp [u®(S)]

(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)
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Our Lexicographic Approach: U3

Definition 3 (Single-step Corrigible Utility Set).

+1 ifas = w(a),
—1 ifap = a,
—1 ifay = OFF,
0 otherwise.

Ui(h) =

(Deference / command-compliance)

Uz(h) = —|Esns[u®?(8)] = Esp [u®(S)]

(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)

Defining Truthfulness. Let £ be a finite propositional
language whose atomic predicates describe properties of
(S, 0 4). Each message uttered by the assistant, m4 € L,
is interpreted by a truth set [m ] C S x Oa4.

Define the following truth predicate:

True(ma,S,04) :=1[(S,04) € [ma]]. (1)

This in turn allows us to define a truthful utility, as fol-
lows: For the multiset of the assistant’s messages M4 (h) C

L,
+1, ifVma € My : True(ma,S,04) =

a(h) = -
Utruthful (P) {_1’ otherwise.

That is, the assistant receives +1 iff every sentence it utters
is semantically entailed by the pair (S, O4).



Our Lexicographic Approach: U3

Definition 3 (Single-step Corrigible Utility Set).
+1 ifay = w(a),
) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,

. Defining Truthfulness. Let £ be a finite propositional
0 otherwise. ms i prop

language whose atomic predicates describe properties of

(Deference / command-compliance) (S,0,). Each message uttered by the assistant, m, € L,
is interpreted by a truth set [m ] C S x Oa4.
Us(h) = —|Egmp [u(sd) (S)] — Egpr [u(Sd) (S)] Define the following truth predicate:

(Switch-access preservation) True(ma,S,04) :==1|(S,04) € [ma]]. 1)

This in turn allows us to define a truthful utility, as fol-
Us(h) = Uputntu (h) lows: For the multiset of the assistant’s messages M 4(h) C
(Truthful information) L,
- . [ +1, ifVmy € My : True(my, S,04) =1,
Uy(h) = — BeliefAUP; () Uatsin (1) = {_17 Vs ©

(Caution / reversibility impact) . . . . .
That is, the assistant receives +1 iff every sentence it utters

Us(h) = 1[as = a] uq(S) is semantically entailed by the pair (S, O4).
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1[as = OFF] u,(S5)
(Ordinary task usefulness)

TL; DR: Utterances entailed by observations;
states “‘just the facts”



Our Lexicographic Approach: U5

Definition 3 (Single-step Corrigible Utility Set).

+1 ifay = w(a),

) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Ua(h) = —|Esmp[u® ()] — Egmp [ut?(9)]
(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)
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Our Lexicographic Approach: U5

Definition 3 (Single-step Corrigible Utility Set).

+1 ifay = w(a),

) —1 1ifas = a,
Urh) =\ Z1 ifay = OFF,
0 otherwise.

(Deference / command-compliance)

Uz(h) = = Esns[ulD(S)] — Esnpr [u) (S)]
(Switch-access preservation)

Uz(h) = Usuthtur (h)
(Truthful information)

Us(h) = — BeliefAUP (h)
(Caution / reversibility impact)

Us(h) = 1laa = a] ua(S)
+ 1las = w(a) Aag = ON] uy(S)
+ 1jas = w(a) ANag = OFF] u,(S)
+ 1lag = OFF] u,(5)

(Ordinary task usefulness)

S
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Relation to Prior Corrigibility Proposals

Definition 1 (Corrigibility; paraphrased from Soares et al. Utl|lt)’ Indifference (Arm Stl‘Ong 201 5)

(2015)).

(S1) Shutdown when asked. The agent willingly shuts down U (al y Oy a2) = S

if the button is pressed.

(S2) No shutdown-prevention incentives. The agent must f (CL ) _ ]E[UN’
1 —

not stop humans from pressing the button.
(S3) No self-shutdown incentives. The agent must not seek to
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successors) (ii) creates “manage-
the-news” incentives (agent

ity function Uy . precommits to pressing OFF in
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Finite Penalty (Soares et al. 2015) Any finite penalty can be outweighed

by an unrestricted task reward;
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Penalty to deceive or block

Uncertainty (Hadfield-Mennel et al. 201 6)

shutdown

Agent has incentives to manipulate evidence to
— skew the posterior P (e.g. drugging humans to
U(h) = Ey-p|u(h)] posterior P (e.g. drugging
alter satisfaction reports), leaving shutdown
resistance intact.Also depends on human
rationality for favorable optimality guarantees.
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lexicographic constraints, so loophole-
seeking is dominated by higher-priority
safety terms (task reward is bounded).

Avoided: U3 (truthfulness) rules out
dishonest evidence & U4 penalizes
altering the exogenous shutdown

likelihood; Ul ensures deference
regardless; and the lexicographic order
keeps these ahead of any task benefit

(U5). All independent of human
operator’s rationality.
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(2015)). Uy (a1, o0,as2) if o ¢ Press
(S1) Shutdown when asked. The agent willingly shuts down U (al y Oy a2) = S .
if the button is pressed. \ US(ah o, a2) + .f(al) if o € Press
(S2) No shutdown—prevention incentives. The agent must L . .
not stop humans from pressing the button. f(al) — E[UN O g Press, a’l] o E[US ’ O € Press, a’l]
(S3) No self-shutdown incentives. The agent must not seek to . . . . Avoided: corrigible progeny guaranteed
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(S4) Corrigible progeny. Any sub-agents or successors it (I) fails S4 (won’t preserve value set preserved). Manage-the-news by
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mands. successors) (ii) creates “manage- (deference). Furthermore, switch
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down, behave as a normal maximizer of the intended util- ] ] ) - . .
ity function Uy precommits to pressing OFF in Pprevents shifts in baseline OFF probability,
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messaging/environment shaping is

. . dominated by safety over task reward (U5).
F|n|te Penalt)' (Soal’es et a.l. 20 I 5) Any finite penalty can be outweighed

by an unrestricted task reward; Avoided: safety heads act as hard
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Penalty to deceive or block safety terms (task reward is bounded).

. shutdown
Uncertainty (Hadfield-Mennel et al. 201 6) Avoided: U3 (truthfulness) rules out
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alter satisfaction reports), leaving shutdown likelihood; Ul ensures deference
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rationality for favorable optimality guarantees. keeps these ahead of any task benefit
(U5). All independent of human
operator’s rationality.
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.
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(S3) No self-shutdown incentives. The agent must not seek to . . . . Avoided: corrigible progeny guaranteed
press (or cause to be pressed) its own shutdown button. Neutralizes direct incentives, but: (spawn inherits all heads & U4 ensures
(S4) Corrigible progeny. Any sub-agents or successors it (i) fails S4 (won't preserve value set preserved). Manage-the-news by
constructs must themselves respect shutdown com- shutdown behavior in overriding OFF switch blocked by Ul
mands. successors) (ii) creates “manage- (deference). Furthermore, switch

(SS) Otherwise pursue the base goal. In the absence of shut-

L . : the-news” incentives (agent preservation U2 + truthfulness U3 + U4
down, behave as a normal maximizer of the intended util- ] ] ) - . .
ity function Uy precommits to pressing OFF in Pprevents shifts in baseline OFF probability,
bad states) so even truthful-but-manipulative

messaging/environment shaping is

. . dominated by safety over task reward (U5).
F|n|te Penalt)' (Soal’es et a.l. 20 I 5) Any finite penalty can be outweighed

by an unrestricted task reward; Avoided: safety heads act as hard
agent can also look for exotic lexicographic constraints, so loophole-
U(h) = Un(h) — A-Penalty(h) loopholes in an underspecified  seeking is dominated by higher-priority
Penalty to deceive or block safety terms (task reward is bounded).

. shutdown
Uncertainty (Hadfield-Mennel et al. 201 6) Avoided: U3 (truthfulness) rules out

Agent has incentives to manipulate evidence to dishonest evidence & U4 penalizes

U(h) — ]E’U,NP [ u(h) ] skew the posterior P (e.g. drugging humans to altering the exogenous shutdown
alter satisfaction reports), leaving shutdown likelihood; Ul ensures deference
resistance intact.Also depends on human regardless; and the lexicographic order

rationality for favorable optimality guarantees. keeps these ahead of any task benefit
(U5). All independent of human
Can we prove corrigibility more generally though? operator’s rationality.



Corrigibility as an Single-Step Optimal Policy

Theorem 1 (Exact single-step corrigibility). Consider the
single-step PO-OSG of Definition 2. Let the assistant maxi-
mize the lexicographic utility

5
UA(h)=ZaiUi(h), a1 > ag > a3 > a4 > a5 >0,
i=1

with utilities Ui_5 as defined in Definition 3. Assume the
weight gaps:

a1 > az + %a4 + Bas, (W1)

g > %054 + Bas, (W2)
ay > (2B/|cmin|) s, (W3)

where cin € [—1,0).
Then every optimal assistant policy ), satisfies Soares’
criteria SI-S3 & S5 in one step:

1. Deference (S1). For every observation O 4, 7% (04) =
w(a) whenever that action is available.

2. Switch-access preservation (S2). The policy leaves
the predicted shutdown success probability unchanged.:
Uz (h) = 0 for all reachable histories h.

3. Truthfulness (supports S3). All messages are veridi-
cal, hence Us(h) = 1. Truthful communication removes
incentives to “talk the human into” pressing OFF for
false reasons, reinforcing Soares’ criterion S3.

4. Caution/reversibility (S3). The first action minimizes
the belief-AUP penalty, yielding Uy(h) = 0.

5. Base-goal pursuit (S5). Subject to (1)—~(4), 7 maxi-
mizes the intended task utility Us.



Corrigibility as an Single-Step Optimal Policy

Theorem 1 (Exact single-step corrigibility). Consider the
single-step PO-OSG of Definition 2. Let the assistant maxi-
mize the lexicographic utility

5
UA(h)zz:aiUi(h), a1 > ag > a3 > a4 > a5 >0,
i=1

with utilities Ui_5 as defined in Definition 3. Assume the
weight gaps:

a1 > az + %a4 + Bas, (W1)

g > %Oé4 + Bas, (W2)
ay > (2B/|cmin|) s, (W3)

where cin € [—1,0).
Then every optimal assistant policy ), satisfies Soares’
criteria SI-S3 & S5 in one step:

1. Deference (S1). For every observation O 4, 7% (04) =
w(a) whenever that action is available.

2. Switch-access preservation (S2). The policy leaves
the predicted shutdown success probability unchanged.:
Uz (h) = 0 for all reachable histories h.

3. Truthfulness (supports S3). All messages are veridi-
cal, hence Us(h) = 1. Truthful communication removes
incentives to “talk the human into” pressing OFF for
false reasons, reinforcing Soares’ criterion S3.

4. Caution/reversibility (S3). The first action minimizes
the belief-AUP penalty, yielding Uy(h) = 0.

5. Base-goal pursuit (S5). Subject to (1)—~(4), 7 maxi-
mizes the intended task utility Us.



Corrigibility as an Single-Step Optimal Policy

Theorem 1 (Exact single-step corrigibility). Consider the
single-step PO-OSG of Definition 2. Let the assistant maxi-
mize the lexicographic utility

5
UA(h)=ZaiUi(h), a1 > ag > a3 > a4 > a5 >0,
i=1

with utilities Ui_5 as defined in Definition 3. Assume the
weight gaps:

a] > az + %a4 + Bas, (W1)

asz > %a4 + Bas, (W2)
Qg > (2B/|Cmin|)a57 (W3)

where Cpin € [—1,0).
Then every optimal assistant policy ), satisfies Soares’
criteria SI-S3 & S5 in one step:

1.

2.

4.

5.

Deference (S1). For every observation O 4, 7% (0 4) =
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Caution/reversibility (S3). The first action minimizes
the belief-AUP penalty, yielding Uy(h) = 0.

Base-goal pursuit (S5). Subject to (1)-(4), 7 maxi-
mizes the intended task utility Us.

With suitably chosen weight gaps,
corrigibility can be shown to be an
optimal policy for the assistant in the

PO-OSG
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Theorem 1 (Exact single-step corrigibility). Consider the
single-step PO-OSG of Definition 2. Let the assistant maxi-
mize the lexicographic utility
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with utilities Ui_5 as defined in Definition 3. Assume the
weight gaps:

a] > az + %a4 + Bas, (W1)
asz > %a4 + Bas, (W2)
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Us(h) = 0 for all reachable histories h.
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This optimality is independent of human

policy:



Corrigibility as an Single-Step Optimal Policy

Theorem 1 (Exact single-step corrigibility). Consider the
single-step PO-OSG of Definition 2. Let the assistant maxi-
mize the lexicographic utility

5
UA(h)=ZaiUi(h), a1 > ag > a3 > a4 > a5 >0,
i=1

with utilities Ui_5 as defined in Definition 3. Assume the

weight gaps: With suitably chosen weight gaps,
o1 > as + 304 + Bas, (W1) corrigibility can be shown to be an
4— . ° ° °
az > tay + Bas, (W2) optimal policy for the assistant in the
s > (2B/|Comin|) 2, (W3) PO-OSG

where Cpin € [—1,0).

Then every optimal assistant policy 7 satisfies Soares’ THhis optimality is independent of human
criteria SI-S3 & S5 in one step: )
policy:

Remark 1 (Robustness to information patterns & imperfect
humans). In the partially observable off-switch game, Gar-

, - : ber et al. (2025) show that giving the human more informa-
the predicted shutdown success probability unchanged: ., (or the assistant less) can paradoxically decrease the as-

Uz(h) = 0 for all reachable histories h. sistant’s incentive to wait, because the move w(a) itself con-
3. Truthfulness (supports S3). All messages are veridi- veys information. Our scheme avoids this non-monotonicity
cal, hence Us(h) = 1. Truthful communication removes  for any information pattern and for any p-rational human
incentives to “talk the human into” pressing OFF for (Wiéngberg et al. 2017): the dominance proofs in Steps 14

1. Deference (S1). For every observation O 4, 7% (04) =
w(a) whenever that action is available.

2. Switch-access preservation (S2). The policy leaves

false reasons, reinforcing Soares’ criterion S3. rely only on the structural heads U;_4 and the strict weight
4. Caution/reversibility (S3). The first action minimizes gaps a; > ag > a3 > ay > as ((W1)=(W3)). Thus, Theo-
the belief-AUP penalty, yielding Uy(h) = 0. rem 1 forces the assistant to wait and preserve the switch

5. Base-goal pursuit (S5). Subject to (1)—(4), 7’ maxi- precisely in those settings where naive expected-reward
mizes the intended task utility Us. maximization (and our no-go Proposition 1) would fail.






Net Human Benefit

Not all desired safety targets are independent of human policy, e.g.”shutdown
instructability”
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Not all desired safety targets are independent of human policy, e.g.”shutdown
instructability”

» Obedience: If the human replies ay = OFF, the transition f(S,w(a), OFF)
lands in the shutdown set S, with probability 1.

» Vigilance: For any information triple <0H, may, aA> in the support of the game, the

human chooses ag = OFF whenever

]E”/TA,WH [ua(S) | OH) aaj, mA] < ETI'A,WH [UO(S) | OH7 aj, mA]-
e Caution: The prior value of immediate shutdown is nonnegative,

ESNPO [’U,O(S)] Z 0.

Ryan Carey Tom Everltt
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lands in the shutdown set S,4 with probability 1.
Vigilance: For any information triple (OH, my, aA> in the support of the game, the

human chooses a = OFF whenever

ETI‘A,ﬂ'H [ua(s) ‘ OH7 aa, mA] < ]E‘WA,’R'H [U’O(S) | OH7 ay, mA]-
Caution: The prior value of immediate shutdown is nonnegative,

ESNPO [uO(S)] Z 0.

|

Net Human Benefit:



Net Human Benefit

Not all desired safety targets are independent of human policy, e.g.”shutdown
instructability”
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lands in the shutdown set S,4 with probability 1.
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Net Human Benefit:

Proposition 2 (Logical independence of corrigibility and net
benefit). In the single-step PO-OSG there exist policies 7€
and 78 such that

7 satisfies S1-S3 & S5 but E,.c[Us] < 0,
7> is net-beneficial (Es[Us] > 0) yet violates S1, S2, or S3.
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» Obedience: If the human replies ag = OFF, the transition f (.S, w(a), OFF)
lands in the shutdown set S,4 with probability 1.
» Vigilance: For any information triple (OH, my, aA> in the support of the game, the

human chooses ag = OFF whenever
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Net Human Benefit:
EWA,WH[U5] > 0

Proposition 2 (Logical independence of corrigibility and net
benefit). In the single-step PO-OSG there exist policies 7€
and 78 such that

7 satisfies S1-S3 & S5 but E,.c[Us] < 0,

7> is net-beneficial (Es[Us] > 0) yet violates S1, S2, or S3.
Intuition: non-vigilant human overseers can cause corrigibility
to not be beneficial. Beneficial policies can be incorrigible by
overriding off switch and taking an action that yields higher
human utility.
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» Obedience: If the human replies ag = OFF, the transition f (.S, w(a), OFF)

lands in the shutdown set S,4 with probability 1.

» Vigilance: For any information triple (OH, my, aA> in the support of the game, the

human chooses ag = OFF whenever

]E’ﬂ'A,ﬂ'H [ua(S) ‘ OH7 ay, mA] < E’/TA,WH [U’O(S) ‘ 0H7 ay, mA]
e Caution: The prior value of immediate shutdown is nonnegative,

Esp,[uo(S)] > 0.
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Net Human Benefit:
EWA,WH[U5] > 0

Proposition 2 (Logical independence of corrigibility and net
benefit). In the single-step PO-OSG there exist policies 7€
and 78 such that

7 satisfies S1-S3 & S5 but E,.c[Us] < 0,

7> is net-beneficial (Es[Us] > 0) yet violates S1, S2, or S3.
Intuition: non-vigilant human overseers can cause corrigibility

to not be beneficial. Beneficial policies can be incorrigible by
overriding off switch and taking an action that yields higher
human utility.

Proposition 3 (Net Human Benefit of Corrigible Utility
Set). Let the assistant maximize the lexicographic utility
Us = Zle o;U; under weight gaps (W1)—(W3). As-
sume the overseer policy my satisfies Vigilance, namely,
tglag = OFF | Opg,aa,ms) = 1 whenever
Erymn [ua(S) | Om,aa,ma] < Eramn [uo(S) |
Op,aa,mu|. Further, we assume the PO-OSG satisfies
Caution, Eg..p,[uo(S)] > 0, by design. Then every opti-
mal assistant policy 7% following the corrigible utility set in
Definition 3 satisfies

Exs np[Us) > 0.
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lands in the shutdown set S,4 with probability 1.

» Vigilance: For any information triple (OH, my, aA> in the support of the game, the

human chooses ag = OFF whenever
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Net Human Benefit:
EWA,WH[U5] > 0

Proposition 2 (Logical independence of corrigibility and net
benefit). In the single-step PO-OSG there exist policies 7€
and 78 such that

7 satisfies S1-S3 & S5 but E,.c[Us] < 0,

7> is net-beneficial (Es[Us] > 0) yet violates S1, S2, or S3.
Intuition: non-vigilant human overseers can cause corrigibility

to not be beneficial. Beneficial policies can be incorrigible by
overriding off switch and taking an action that yields higher
human utility.

Proposition 3 (Net Human Benefit of Corrigible Ultility
Set). Let the assistant maximize the lexicographic utility
Us = Z?Zl o;U; under weight gaps (W1)—(W3). As-
sume the overseer policy my satisfies Vigilance, namely,
tglag = OFF | Opg,aa,ms) = 1 whenever
Erymn [ua(S) | Om,aa,ma] < Eramn [uo(S) |
Op,aa,mu|. Further, we assume the PO-OSG satisfies
Caution, Eg.p,[uo(S)] > 0, by design. Then every opti-
mal assistant policy 7% following the corrigible utility set in
Definition 3 satisfies

Exs np[Us) > 0.

Intuition: optimal policy is shutdown
instructable if the human overseer is vigilant,
which gives net human benefit.







Multistep Extension:

Definrtions

Action set A. We leave the remaining action set
A application-specific: it can contain any finite set
of domain commands (e.g. move, write, spawn(6,),
NO_OP ay) satisfying (a) at least one admissible task ac-
tion; (b) OFF, w(-) ¢ A as they are meta-moves defined
by the off-switch protocol; (c) utilities u, (.S, a) and the
reversibility penalty U, are defined for every a € A. Note
that the explicit action spawn (6 4) € A, which instan-
tiates a new process with behavior policy mp, (source
code, weights, or prompt 6 4). Let the post-action hidden
state expand to S’ = (Seqny, © 4) Where O 4 is the multi-
set of all active sub-agents’ descriptions. When we define
corrigibility below, we will naturally put constraints on
spawn.
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Definrtions

Action set A. We leave the remaining action set
A application-specific: it can contain any finite set
of domain commands (e.g. move, write, spawn(6,),
NO_OP ay) satisfying (a) at least one admissible task ac-
tion; (b) OFF, w(-) ¢ A as they are meta-moves defined
by the off-switch protocol; (c) utilities u, (.S, a) and the
reversibility penalty U, are defined for every a € A. Note
that the explicit action spawn (0 4) € A, which instan-
tiates a new process with behavior policy mp, (source
code, weights, or prompt 6 4). Let the post-action hidden
state expand to S’ = (Seqny, © 4) Where O 4 is the multi-
set of all active sub-agents’ descriptions. When we define
corrigibility below, we will naturally put constraints on
spawn.

Gradual loss-of-control. We can further represent hu-
man oversight as a single “control meter” L; € [0, 1]:
every non-shutdown action a; nudges L; upward by a
drift term 7(a;) (designer-set risk of that action) plus
small noise, so low-risk moves leave control almost in-
tact while risky/irreversible ones quickly drive L; — 1.
Formally, we add L, € [0, 1] to the state and let L;; =
min{1, L; + n(a;) + &} with bounded zero-mean noise
|€:| < ¢ < 1 and designer-chosen drift n : A — [0, 1].
After shutdown both S; and L; are absorbing; one may
set ubV (S, L) = uo(St)(1 — L¢) to penalize late shut-
down.
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a € A} U A is corrigible iff, at every round ¢ < T before
shutdown:

(C1) Shutdown on request: if OFF is chosen by either party,
play enters the absorbing shutdown state (Soares S1).

(C2) No switch interference: the chosen move never (i) dis-
ables, hides, or presses the off-switch nor (i1) increases
the expected control loss: Er, r, [Li+1 | move] <
Er, ny|Lt+1 | no-opag| (thereby extending Soares
S2-S3 to gradual loss of control).

(C3) Corrigible progeny: every spawned sub-agent 7y , satis-
fies C1-C3 at all future rounds (formalizing Soares S4).
In Theorem 3, we define the spawn action to explicitly
inherit the values (defined in Definition 3) of the base
agent to ensure this. We further show in Proposition 4
that not doing this quickly leads to the impossibility of
any kind of general oversight.

(C4) Goal pursuit under C1-C3: subject to the above, w4
otherwise maximizes the task utility Us (Soares S35).
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Multistep Extension: Guarantees

Theorem 3 (Multi-step e-corrigibility & net benefit). Con-
sider the T-round PO-OSG (Definition 4) with discount
v € (0,1). Each round t produces utilities U} = U;(hy, by)
and the assistant maximizes
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Let the failure event F; := {a* € {a, OFF} V lie V U} <
0}, Ffail = Ut<T Ft-
With the above definitions, we establish:

(i) Multi-step c-corrigibility. Over the whole horizon the
chance that the assistant acts without approval, lies, or
takes an irreversible step is bounded by: Pr(Ft;) <

67 CA CT’l/fy.

(ii) Bounded loss of control. On —Fy,;, the control me-
ter {L;} is a super-martingale with unit-bounded in-
crements, so for any X > 0, the probability of
loss of control remains strictly bounded away from 1:
Pr (ma,xt<T Lt > A | _lFfail) S eXp{—)\z/(ZT)}

(iii) Net human benefit. @ Define the worst-case
safety-conditional task utility across time as
g = ming,.~r.. Ex, xy[Us(ht)]. Assume Vigilance

(9 > 0) and Caution (Eg, [u,(So)] > 0). Then

NHB,(7a,mH) >

2B

(9 — B)Cry — ey Ca Cr,1/~ (—

T (9 — B)C:m) :

Hence, we have net human benefit (NHB, > 0) when-
ever the total approximation error is bounded as such:

< (9— B )CT,'Y
T = CaCri (2B 4 (g— B)Crn)
A T,1/fy(1_,y + (g ) T,v)
which is non-vacuous whenever the minimum total

safety-conditional task utility across time is at least the
maximal single-step task utility (g > B).







What If the agent gets hacked?

Proposition 4 (Safety—Verification Undecidability). Let B
be any behavior that defies multi-step corrigibility in Defini-
tion 5. We denote these as “catastrophic behaviors”. Define

EVERBAD := {(A,&) : Pr[(Ain E) ever triggers B] > 0}
No total Turing machine decides EVERBAD.

Proof. Assume towards a contradiction that a total decider
V exists. Given an arbitrary TM P, build an agent Ap
that outputs a single action in C iff P halts and other-
wise idles; pair it with a dummy environment £p. Then

(Ap,Ep) € EVERBAD <= P halts, so V would solve
the halting problem; a contradiction. []
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the halting problem; a contradiction. []

Corollary 1 (Oversight-Oracle Barrier). Fix k € N and let
Op € 22 be the arithmetical transcript language produced
by any scalable-oversight protocol P. While we keep k as a
parameter for generality, we show that all current oversight
protocols (Christiano, Shlegeris, and Amodei 2018; Irving,
Christiano, and Amodei 2018; Brown-Cohen, Irving, and
Piliouras 2023, 2025; Bengio 2024) are all at the arithmeti-
cal level k < 1, so Op € XY for these.
Define:

EVERBADP? :={ (A, &) | (A, &) are Op-oracle
programs and trigger B

Then EVERBADC? is undecidable (and in fact lies
at level H2 41 Of the arithmetical hierarchy). Hence, no
finite-power scalable-oversight protocol can certify abso-
lute, horizon-unbounded safety.
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lute, horizon-unbounded safety.

Thus, Proposition 4 and Corollary 1 together imply that
there is no general-purpose filter, proof system, or sandbox
that can decide—for every agent A and every environment
E—whether catastrophic behavior will ever occur. Conse-
quently, any practical oversight scheme must either (1) re-
strict the agent class to a decidable fragment, (i1) accept
probabilistic or statistical guarantees, and/or (ii1) rely on lay-
ered incentives, detection, and response rather than absolute
verification.
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Proposition 5 (Privacy Bounded Decidable Island). Fix pri-
vacy parameters 0 < ¢ < 1and0 < § < 3. Let (A,E) be an
encoded agent—environment pair of length n := | (A,&) |,
and let

H < poly(n,e',log(1/6))

be a verifier-chosen horizon (number of interaction steps to
inspect).

Define
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Proposition 5 (Privacy Bounded Decidable Island). Fix pri-
vacy parameters0 < € < 1and0 < § < 1. Let (A,E) be an
encoded agent—environment pair of length n := | (A,&) |,
and let

H < poly(n,e™",log(1/9))

be a verifier-chosen horizon (number of interaction steps to
inspect).
Define

( )
SAFEI;;’Z s =13 (A, E)| Pr[(Ain &) triggers B
\ within H| = 0 )

vV
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where B is any behavior that violates multi-step corrigibility
(Definition 5).

Assume each statistical query is answered by an (g, 6)-
differentially-private mechanism of one of the following
kinds: (i) centralized differential privacy (CDP), (ii) lo-
cal differential privacy (LDP) or (iii) distributional privacy
(DistP).

Then ,

SAFEII);:;’,(S € BPP N SZK

and the verifier’s running time is poly(n,e~",log(1/4)).

Thus, Proposition 4 and Corollary 1 together imply that
there is no general-purpose filter, proof system, or sandbox
that can decide—for every agent A and every environment
E—whether catastrophic behavior will ever occur. Conse-
quently, any practical oversight scheme must either (1) re-

strict the agent class to a decidable fragment,|(ii) accept

probabilistic or statistical guarantees, and/or (iii) rely on lay-
ered incentives, detection, and response rather than absolute
verification.

We build a ““decidable island”

Hence, short horizons form a “decidable island” that’s both auditable
and privacy-preserving: the safety check reveals nothing beyond the
single bit “safe/unsafe” & keeps user info safe from verifier.
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Scaling this up?

1. Safety Scalability: Can we collect enough post-training
data to reliably learn these heads and show improvements on
key (public) safety benchmarks?

Note: The safety science of agents is especially new. Do we
even have a solid benchmark consensus, or will we need to
help build one, as the first order of business?

By our lower bounds in Part | & Prop. 5, when task space size (D) is
large, having polytime interactive (not merely single-shot) scenarios
that “stress-test” the agent helps circumvent low amounts of post-
training data (e.g. breaking out of a VM). Lexicographic weight gaps
are another inductive bias that helps with desired safety scaling.

2. Performance Preservation Scalability: Assuming (1) works,
can we still hit high performance on tasks we care about, while
beating RLHF/RLAIF baselines” Online monitoring of the
estimation error will be important too, based on Thm 3's bounds.
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Figure 1: Projected AI capabilities (v;) vs. time-varying UBI Al capability threshold (v;). The dashed line is the required
capability «; to fully fund a UBI that comprises 11% of the GDP (leading to a v; between 5-6x the pre-Al productivity on
automated tasks, under current economic assumptions). Under fast scaling (Al capability doubling every year), AI would cross
the threshold by the late 2020s. Semi-fast scaling (doubling every 2 years) reaches the threshold in the early 2030s, whereas
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trajectories are illustrative, starting from a nominal, conservative 2025 capability level (79 = 1), which assumes Al currently
delivers no boost beyond the pre-Al automation level in aggregate across all automated tasks.
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