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From Neurons to Behavior

Scene Understanding Multi-Step Planning

What are the core design principles that give rise to these abilities!?
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From Neurons to Behavior

Scene Understanding Multi-Step Planning

How do we bridge the gap from neurons to behavior?
Navigation | Flexible Embodiment
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Primate Ventral Stream Implements Object Recognition

Stimulus » Neurons » Behavior
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CNNs as Models of Primate Object Recognition
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CNNs are inspired by visual neuroscience:
|) hierarchy
2) retinotopy (spatially tiled)



CNNs as Models of Primate Object Recognition
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CNNs as Models of Primate Object Recognition

Encoding Decoding
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Task Performance Correlated with Neural Predictivity

Schrimpf*, Kubilius* et al. 2018
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Task Performance Correlated with Neural Predictivity

@ A Neur’OSCience Goal Schrimpf*, Kubilius* et al. 2018
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CNNs as Models of Primate Object Recognition

L = learning rule T = task loss

Backpropagation Categorization

ncodin codin
Stimulus » Neurons » Behavior

V1 (gee000] V2 [(re0000)

V4

| B teses
R PIT/ I ‘ 00000
L CIT/Z ™\
/m | i
o 100-ms /
Pixels visual
presentation
AN
- /;/ Object
|

g

/
AL
Wy

o2
/A Category

|
AR,
WYy

Spatial convolution

over image input

Operations in linear-nonlinear layer
® 0,

. | | |eel A EH >
nonlinear parameters fixed by task-optimization | [&s, ] O
Filter

ImageNet functional (performs behavior) CNNs

D = data stream A = architecture class

Threshold Pool Normalize




Task-Optimized Modeling: Four Components

Task-Optimization (ML)
1.

A = architecture class

2.
T = task loss

3.

D = dataset

4.

L = learning rule
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Task-Optimized Modeling: Four Components

Task-Optimization (ML) Neurobiology
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A = architecture class = circuit neuroanatomy —
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D = dataset = environment i@j
4.

L = learning rule = natural selection + synaptic plasticity




Task-Optimized Modeling: Four Components

L = learning rule T = task loss

“Natural selection ““Ecological niche/
+ plasticity” behavior”

B Dorsal pathway

“Environment” “Circuit”

D = data stream A = architecture class



Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints

Yields:
Quantitatively Accurate & Practica

AND
Principles of Why Neural Responses Are As They Are

ly Useful Brain Models
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» Role of Recurrent Processing During Object Recognition

» Visually-Grounded Mental Simulation

» Vision and Navigation in Rodents

» Future Directions
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Role of Recurrent Processing During Object Recognition

L = learning rule T = task loss
: p : :
“Natural selection A. Nayebi*, D. Bear*, J. Kubilius®, et al. Ecological ’Zic"e/
+ plasticity Task-Driven Convolutional Recurrent Models of the behavior
Backpropagation Visual System. NeurlPS 2018 Categorization

A. Nayebi, et al.
Recurrent Connections in the Primate Ventral Visual Stream Mediate a Tradeoff
Between Task Performance and Network Size During Core Object Recognition.
Neural Computation 2022
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“Environment” “Circuit”

D = data stream A = architecture class



Recurrent connections are everywhere anatomically:

Dorsal pathway

Ventral pathway

Gilbert & Li (2013)

... but what role do they play in behavior (if any)?



CNNs as Models of Primate Object Recognition

L = learning rule T = task loss
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Backpropagation s s e =" » e Categorization
Ag% PIT/CI ggss:r —>@--> —2@—» 2@ —>>@—>
100-ms el TH3 4

N
> i, I Object
& LN ‘ /]
: ol -
Spatial convolution ' 414 LN ! ng rﬂmr/ Categor y
over image input /\
—D—>
Operations in linear-nonlinear layer
® P,

. . @ .| A-> FH>
nonlinear parameters fixed by task-optimization | |, ] O

I m age N et = Threshold Pool Normalize C N N S

“Environment” functional (performs behavior) “Circuit”

D = data stream A = architecture class




CNNs as Models of Primate Object Recognition

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
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Evidence of Functional Relevance During Object Recognition

~20 ms

n=192
100 200
Time post-image onset (ms)  Karet.al(2019)
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Fvidence of Functional Relevance During Object Recognition

CNN-not-solved images are
solved by the primate ventral
- stream later in time!

Neurobiological Puzzle:

What is the role of recurrent processing in
the primate ventral stream during object
recognition?

~20ms
of n=192

75 B 0 100 200 .A
Alexnet Accuracy (d) Time post-image onset (ms)  Karetal (2019)
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Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints

Yields:
Quantitatively Accurate & Practica

AND
Principles of Why Neural Responses Are As They Are

ly Useful Brain Models



Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints
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CNNs as Models of Primate Object Recognition

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation s s e =™ > e Categorization
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Convolutional Recurrent Networks (ConvRNNSs)

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation sim s ewons =" > e Categorization
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Convolutional Recurrent Networks (ConvRNNSs)

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation Categorization
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Many choices of recurrence fail to be performant on ImageNet!

ConvRNNs

ImageNet Fach time-step (10 ms) Is treated equally CNNs
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D = data stream A = architecture class



Implanting Local Recurrence into Feedforward CNNs
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Adding Standard RNNs Helps Incrementally, but Add Lots of Parameters!

0.75 - |Parameters <X1O6>‘ Inspired b), Reciprocal Gated Circuit 718
Units (x10°) the cortical ::::Q h
microcircuit! |7 ﬁ'[ﬁl '
7 [33.5] _’DU S
< |50.6||67.7| 0.9
— ‘ 0. 70
5 V70 V.0 08 08
O 16.2 0.9 Ed ks :
>/ ‘ 0.690
< 0.9 16.2 B&
- 0.680 0.9
2 0.675
80
g 0.65 - %
| . %
= 5 | .©
o o 15
£ |
L — :)
=N = o
E: -
0.60 I T =
ntermediate Intermediate ConvRINNs Deep

FF FF



Novel Recurrent Cells Yield Improved ImageNet Performance
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Novel Recurrent Cells Yield Improved ImageNet Performance
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Large-Scale Search Over Long-Range Feedback Connections
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Emergent Global Connectivity Patterns
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Novel Recurrent Cells Yield Improved ImageNet Performance
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L ong-Range Feedback Connections Matter
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Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints
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Task-Optimized Modeling
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Quantitatively Accurate & Practically Useful Brain Models

AND
Principles of Why Neural Responses Are As T hey Are



Comparing to Primate Object Solution Times (OSTs)

>
-

[\
-

Decode Accuracy
@
-

S
-

30 120 160 200
Time (5)



Comparing to Primate Object Solution Times (OSTs)

>
-

Primate

Accuracy

[\
-

Decode Accuracy
@
-

S
-

30 120 160 200
Time (5)



Comparing to Primate Object Solution Times (OSTs)

>
-

Primate

Accuracy

[\
-

Decode Accuracy
@
-

S
-

30 120 160 200
Time (5)



Comparing to Primate Object Solution Times (OSTs)
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Comparing to Primate Object Solution Times (OSTs)
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Comparing to Primate Object Solution Times (OS5 T5s)
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Comparing to Primate Object Solution Times (OS5 T5s)
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Comparing to Primate Object Solution Times (OSTs)
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Intermediate Depth ConvRNNSs best match OSTs
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Intermediate Depth ConvRNNSs best match OSTs
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Why Are ConvRNNs the Most Brain-Like!
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Why Are ConvRNNs the Most Brain-Like!

# of neurons

# of synapses
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Smaller Networks that are Still Performant are More Brain-Likel!
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Smaller Networks that are Still Performant are More Brain-Likel!
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[akeaways

L = learning rule T = task loss
“Natural selection “Ecological niche/
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Neurobiological Puzzle:
What is the role of recurrent processing in the primate ventral stream
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ConvRNNs
ImageNet CNNs
“Environment” “Circuit”

D = data stream A = architecture class



[akeaways

Neurobiological Puzzle:
What is the role of recurrent processing in the primate ventral stream
during object recognition?

Findings:
Enables the primate ventral stream to attain high object
recognition ability under a physical size constraint,

through temporal rather than spatial complexity,

specifically by conserving on number of neurons rather than synapses.
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» Visually-Grounded Mental Simulation

» Vision and Navigation in Rodents

» Future Directions



Visually-Grounded Mental Simulation

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation (%

A. Nayebi, R. Rajalingham, M. Jazayeri, G.R. Yang
Neural foundations of mental simulation: future prediction of latent representations on dynamic scenes.
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The Mental Simulation Hypothesis

The Nature of Explanation _

My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and 1n every way
to react in a much fuller, safer, and more competent manner to the emergencies

which face it.
Craik (1943): The brain builds mental models of the external physical world,
that support physical inferences via mental simulations.

Kenneth Craik



The Mental Simulation Hypothesis

The Nature of Explanation Pre-dates the modern computer!

My hypothesis then is that thought models, or parallels, reality — that its essential
feature i1s not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies

which face it.
Craik (1943): The brain builds mental models of the external physical world,
that support physical inferences via mental simulations.

Kenneth Craik



The Mental Simulation Hypothesis: Behavioral Evidence
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Craik (1943): The brain builds mental
models of the external physical world,
that support physical inferences via
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Focus on physical simulation




The Mental Simulation

Hypothesis: Behavioral Evidence

The Nature of Explanation
My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

Craik (1943): The brain builds mental
models of the external physical world,
that support physical inferences via
mental simulations.
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The Mental Simulation Hypothesis: Human Neuroimaging Evidence

The Nature of Explanation
My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies
which face it.

Craik (1943): The brain builds mental
models of the external physical world,
that support physical inferences via
mental simulations.

The Brain’s “Physics Engine”
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The Mental Simulation Hypothesis: Human Neuroimaging Evidence
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The Mental Simulation Hypothesis: Human Neuroimaging Evidence

The Nature of Explanation

My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us

in mechanical devices which aid thought and calculation.
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The Mental Simulation Hypothesis: Human Neuroimaging Evidence

The Nature of Explanation

My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us

in mechanical devices which aid thought and calculation. . .
£ +1 small

Craik (1943): The brain builds mental
models of the external physical world,
that support physical inferences via

mental simulations.

The Brain’s “Physics Engine”

» A network of brain regions
recruited by physical
inferences (Fischer et al. 2016) |

- Contains information about

mass (Schwettmann et al.
2019)

- Contains information about

physical stability (Pramod et al.
2022)
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The Mental Simulation Hypothesis: Primate Electrophysiological Evidence

The Nature of Explanation
My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies

which face it.

Craik (1943): The brain builds mental
models of the external physical world,
that support physical inferences via
mental simulations.
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The Mental Simulation Hypothesis: Primate Electrophysiological Evidence
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The Mental Simulation Hypothesis: Primate Electrophysiological Evidence
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Functional Constraints of Mental Simulation Across Environments?

Neurobiological Puzzle: What are the
functional constraints that enable us to

predict the future state of our
environment across diverse settings?




Task-Optimized Approach

Neurobiological Puzzle: What are the
functional constraints that enable us to

predict the future state of our
environment across diverse settings?




Task-Optimized Approach

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints

Yields:
Quantitatively Accurate & Practica

AND
Principles of Why Neural Responses Are As They Are

ly Useful Brain Models



Task-Optimized Approach
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Task-Optimized Approach

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation Ay
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Task-Optimized Approach

Sensory-Cognitive Hypothesis Classes

Neurobiological Puzzle: What are the
functional constraints that enable us to

predict the future state of our
environment across diverse settings?




Task-Optimized Approach

Sensory-Cognitive Hypothesis Classes

\End—to-End Future Prediction:

Neurobiological Puzzle: What are the
functional constraints that enable us to

predict the future state of our
environment across diverse settings?




Task-Optimized Approach

Sensory-Cognitive Hypothesis Classes

>onO
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\End—to-End Future Prediction:
w . Pixel-wise

Neurobiological Puzzle: What are the
functional constraints that enable us to

predict the future state of our
environment across diverse settings?




Task-Optimized Approach

Sensory-Cognitive Hypothesis Classes Ground Truth
Latent Future Predictio 2. Dynamics Pretraining Stage .
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Task-Optimized Approach
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Task-Optimized Approach

Inputs Sensory-Cognitive Hypothesis Classes Ground Truth

Latent Future Prediction:

2. Dynamics Pretraining Stage

) T.*.l:)

Foundation Model

TR S A Prediction
\End—to-End Future Prediction:
epue D[@Obj«t—slot

Physion

Dominoes Support

1.Pretraining Stage

>onO

Human Behavior: Physion Object Contact Prediction (OCP) Macaque Neurophysiology: Mental-Pong > omrc
Observed Stimuli Unobserved Outcome b M
Ii
cue e > stimulus last frame true label W [ L
- . NO

= acc.=0.89

-~ W

.| acc. =0.96 bal/paddle occluder Observed epoch
(1240+350 ms)

" Feedback

Occluded epoch
(895+270 ms)

Example Scenarios




Macaque Neurophysiology: Mental Pong

Inputs Sensory-Cognitive Hypothesis Classes Ground Truth
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Macaque Neurophysiology: Mental Pong
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Macague Neurophysiology: Mental Pong
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Perfect Simulation Oracle Predicts Neural Data Vel
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Functional Constraint Hypotheses
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Hypothesis Class |: Pixel-wise Future Prediction
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\End—to-End Future Prediction:




Future Prediction
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Pixel-wise Future Prediction
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Physical Simulation Oracles Predict Neural Data Well
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Pixel-wise Future Prediction Poorly Predicts Neurons
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...and they struggle to generalize to Pong

Input Frames Predicted Frames

Ball stops at final input
frame, in the model’s
“Imagination”



Pixel-wise Future Prediction Poorly Predicts Neurons
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Hypothesis Class 2: Object Slots
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Hypothesis Class 2: Object Slots

Inputs Sensory-Cognitive Hypothesis Classes
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Hypothesis Class 2: Object Slots
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Pixel-wise Future Prediction Poorly Predicts Neurons
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Object Slot Future Prediction Poorly Predicts Neurons
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Object Slot Future Prediction Poorly Predicts Neurons
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Object Slot Future Prediction Poorly Predicts Neurons

/2 DMFC

Perhaps DMFC predicts a “factorized” version of the scene?

o How? Not by allocating fixed object slots!
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Hypothesis Class 3: Latent Future Prediction

Inputs Sensory-Cognitive Hypothesis Classes Ground Truth

Latent Future Prediction:
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Hypothesis Class 3: Latent Future Prediction

Inputs Sensory-Cognitive Hypothesis Classes Ground Truth
Physion Latent Future Prediction: 2. Dynamics Pretraining Stage
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Learn a partial, implicit representation of the physical world by
performing a challenging vision task (“foundation model”)
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Hypothesis Class 3: Latent Future Prediction
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\End-to-End Future Prediction:
w . Pixel-wise

(“Cognitive”)

2. Dynamics Pretraining Stage

Ground Truth

Prediction

Encoder

>oo

i)

Object-slot

Learn a partial, implicit representation of the physical world by
performing a challenging vision task (“foundation model”)

Leverage these dynamics to do explicit future prediction



Hypothesis Class 3: Foundation Models
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Learn a partial, implicit representation of the physical world by
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VWhat vision task!?

Leverage these dynamics to do explicit future prediction




Hypothesis Class 3: Static Image Foundation Models
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Object Slot Future Prediction Poorly Predicts Neurons
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Static Image Foundation Future Prediction Poorly Predicts Neurons
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Hypothesis Class 3: Foundation Models
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What vision task?
We do far more than engage with static images!

Leverage these dynamics to do explicit future prediction




Hypothesis Class 3:Video Foundation Models

Ego4D: everyday activity around the world
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Hypothesis Class 3:Video Foundation Models

Ego4D: everyday activity around the world a
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Ego4D: A massive-scale egocentric dataset

3,670 hours of in-the-wild daily life activity
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Multimodal: audio, 3D scans, IMU, stereo, multi-camera

Grauman et al. 2022 GGOQ I"aphIC d've I'Slty



Static Image Foundation Future Prediction Poorly Predicts Neurons
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Video Foundation Future Prediction Best Predict Neurons
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Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints
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Quantitatively Accurate & Practically Useful Brain Models

AND
Principles of Why Neural Responses Are As T hey Are



Macaque Neurophysiology: Mental Pong

Sensory-Cognitive Hypothesis Classes Ground Truth

Neurobiological Puzzle: What are the functional

constraints that enable us to predict the future state of
our environment across diverse settings?
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Human Behavior: Object Contact Prediction
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Object Contact Prediction Environment

Physion/ThreeD World (TDW) Bear et al. 2021




Human Behavior: Object Contact Prediction

“, Bear et al. 2021
'.‘ “Will the agent object contact the patient object?”

n=100

AGENT [PATIENT

Daniel Bear Joshua Tenenbaum Daniel Yamins Judith Fan
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Bear et al. 2021
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Is the red object going to hit the yellow area?




Model

Fvaluations: What About Both Metrics?

(A) Model Pretraining
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Comparing to Both Human Behavioral and Neural Response Patterns
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Dynamically-Equipped Video Foundation Models Can Match Both
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Dynamically-Equipped Video Foundation Models Can Match Both
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Towards More Robust Future Inference
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L = learning rule T = task loss
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[akeaways

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation latent future prediction

Neurobiological Puzz|e:
What are the functional constraints that enable us to predict the
future state of our environment across diverse settings?

video foundation encoder +
recurrent neural network

“Environment” “Circuit”

D = data stream A = architecture class

egocentric videos



[akeaways

Neurobiological Puzzle:

What are the functional constraints that enable us to predict the
future state of our environment across diverse settings?
Findings:

The brain’s mental simulations crucially involve explicit future
prediction of a visual scene description.
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Neurobiological Puzzle:

What are the functional constraints that enable us to predict the
future state of our environment across diverse settings?
Findings:

The brain’s mental simulations crucially involve explicit future
prediction of a visual scene description.

The scene description used by the brain is not fine-grained at the
level of pixels, but must be “factorized” by the brain somehow.



[akeaways

Neurobiological Puzzle:

What are the functional constraints that enable us to predict the
future state of our environment across diverse settings?
Findings:

The brain’s mental simulations crucially involve explicit future
prediction of a visual scene description.

The scene description used by the brain is not fine-grained at the
level of pixels, but must be “factorized” by the brain somehow.

This factorization is strongly constrained. It does not appear to
represent fixed object slots, but rather a critical component is for it
to enable a wide range of embodied abilities.



Outline

» Role of Recurrent Processing During Object Recognition

» Visually-Grounded Mental Simulation

» Vision and Navigation in Rodents

» Future Directions



Mouse Visual Cortex as a Domain-General, Limited Resource System

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation

vy
A. Nayebi*, N.C.L. Kong*, C. Zhuang, ].L. Gardner, A.M. Norcia, D.L.K.Yamins | '(‘" '
Mouse visual cortex as a limited resource system that self-learns an ecologically-general representation
PLOS Computational Biology 2023

Chengxu Zhuang Justin L. Gardner
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“Environment” “Circuit”

D = data stream A = architecture class



Heterogenerty in Rodent Medial Entorhinal Cortex

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation A. Nayebi, ¢t 45,;,’
Explaining Heterogeneity in Medial Entorhinal Cortex with Task-Driven Neural Networks' ‘.'(4"'

: f L
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“Environment” < |- “Circuit”

Surya Ganguli Lisa Giocoh‘lo Daniel Yamins
D = datg stream A = architecture class



CNNs as Models of Primate Object Recognition

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation s s e =" » e Categorization
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D = data stream A = architecture class




Task Performance Correlated with Neural Predictivity

@ A Neur’OSCience Goal Schrimpf*, Kubilius* et al. 2018
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Task Performance Correlated with Neural Predictivity

Neural Predictivity

Schrimpf*, Kubilius* et al. 2018
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Task Performance Correlated with Neural Predictivity
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Object Categorization Ability NOT Correlated with Neural Predictivity
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Object Categorization Ability NOT Correlated with Neural Predictivity
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Neurobiological Puzzle:

Does task-optimization apply to rodents?
Yes!

Deep, Supervised CNNs
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Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints

Yields:
Quantitatively Accurate & Practica

AND
Principles of Why Neural Responses Are As They Are

ly Useful Brain Models



Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints
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Object Categorization Ability NOT Correlated with Neural Predictivity
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Neurobiological Puzzle:

Does task-optimization apply to rodents?
Yes!
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Object Categorization Ability NOT Correlated with Neural Predictivity
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Object Categorization Ability NOT Correlated with Neural Predictivity

Primates
Schrimpf*, Kubilius* et al. 2018
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What is the ecological reason why the mouse visual system prefers self-supervision?
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Assessing lask-Generality




Assessing lask-Generality




Assessing lTask-Generality
Train Evaluate

ImageNet Reward-Based Navigation




Assessing lask-Generality




-mbodied Virtual Rodent Navigation

Evaluate

Vision Network

Decision Making

Cr@ V(s,)

High degree-of-freedom body, keeping track of history over long timescales with high-
dimensional, continuous inputs

Biomechanical Model
(Joint angles, accelerometer, etc.)



Contrastive Models Yield Better Transfer Performance




Contrastive Models Yield Better Transfer Performance
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Contrastive Models Yield Better Transfer Performance

Reward-Based Pose
Navigation Estimation
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Hippocampal-Entorninal Spatial Map
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Accounting for Heterogeneous Code!
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Accounting for Heterogeneous Code!

Grid Cells

More like ~2-3%! Heterogeneous Cells

Border Cells

Neurobiological Puzzle(s):

|. How might we characterize what
%W these heterogeneous cells do!?

2.What functional role do these
cells serve in the circuit, if any?
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A Task-Optimized Account of Heterogenerty

Grid Cells
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emerge in networks optimized
%W for path integration!
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Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints
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Quantitatively Accurate & Practically Useful Brain Models

AND
Principles of Why Neural Responses Are As T hey Are



[akeaways

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation 4 )y
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Neurobiological Puzzle:
Does task-optimization apply to rodents?
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Distilling Constraints: Putting it all together

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Backpropagation 4 )y
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[akeaways

Neurobiological Puzzle:
Does task-optimization apply to rodents?

Findings:
Yes!
|. Mouse visual cortex: Makes best use of the mouse’s limited
resources to create a general-purpose visual system.

2. Rodent medial entorhinal cortex: Grid cells are not uniquely
relevant to navigation. Both heterogeneous and grid cells arise
jointly through task-optimization.




Broad lakeaways

» Role of Recurrent Processing During Object Recognition

Enables the primate ventral stream to attain high object recognition ability
through temporal rather than spatial complexity, specifically conserving on
the number of neurons.

» Visually-Grounded Mental Simulation

Mental simulation crucially relies on explicit future prediction of a “factorized
description” of visual scenes, where this “factorized description” is strongly
constrained and must enable a wide range of dynamic sensorimotor abilities.

» Vision and Navigation in Rodents

Both mouse visual cortex and rodent medial entorhinal cortex are best
explained by a process of biological performance optimization on a suitable
task objective.



Outline

» Role of Recurrent Processing During Object Recognition

» Visually-Grounded Mental Simulation

» Vision and Navigation in Rodents

» Future Directions



Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints

Yields:
Quantitatively Accurate & Practica

AND
Principles of Why Neural Responses Are As They Are

ly Useful Brain Models



Task-Optimized Modeling

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’'s Constraints
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Task-Optimized Models of Individual Areas

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
mouse Vision

primate vision

Nayebi*, Bear*, Kubilius*
et al NeurlPS (2018)

Nayebi et al
Neural Computation (2022)

I. Recurrent Processing During 2. Visually-Grounded Mental

Object Recognition

“Environment”

D = data stream

primate & human
mental simulation

Nayebi et al NeurlPS (2023)

rodent MEC/HPC

-60 0 60
Degrees azimuth

Nayebi*, Kong* et al ]
PLOS Comp. Biol. (2023) Nayebi et al NeurIPS (2021)

Simulation

3. Vision and Navigation in Rodents

“Circuit”

A = architecture class



The Brave New World of Large-5cale Neuroscience

Q: How are we going to make sense of all this data?

\‘g\ o
u&%\ W

A: Reverse-engineer the animal brain.







Next Steps: Builld Artificial Rodents

Integrated, Task-Optimized Model of the Rodent
Why!?

The de facto organism of
choice in neuroscience.




Next Steps: Builld Artificial Rodents

Integrated, Task-Optimized Model of the Rodent
Why!?

The de facto organism of
choice in neuroscience.

Rodents perform interesting
embodied behaviors:

*Navigation & planning

» Flexible motor control

> Autonomous (and trained)
decision making



Next Steps: Builld Artificial Rodents

Integrated, Task-Optimized Model of the Rodent
Why!?

The de facto organism of
choice in neuroscience.

Rodents perform interesting
embodied behaviors:

*Navigation & planning

» Flexible motor control

> Autonomous (and trained)
decision making



Current Al Strugsles to Understand the Physical World

OpenAl Sora,
February 2024

@OpenAl Researc hv APlv ChatGPTv Safety ~Company v Search Login 7 ‘ Try ChatGPT ]

Creating video from tekt

Sorais an Akmodelthat can create realistic and
imaginativeiscenes from text instructions!

Read technical report

All videos on'this page were generated directly
by Sora without modification.




Current Al Struggles to Understand the Physical Worla

OpenAl Sora,
February 2024




Next Steps: Builld Artificial Rodents

Integrated, Task-Optimized Model of the Rodent
Why!?

The de facto organism of
choice in neuroscience.

Rodents perform interesting
embodied behaviors:

*Navigation & planning

» Flexible motor control

> Autonomous (and trained)
decision making
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Next Steps: Building the

Embodied Agent

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
mouse Vision

primate vision

Nayebi*, Bear*, Kubilius*
et al NeurlPS (2018)

Nayebi et al
Neural Computation (2022)

I. Recurrent Processing During 2. Visually-Grounded Mental

Object Recognition

“Environment”

D = data stream

primate & human
mental simulation

Nayebi et al NeurlPS (2023)

rodent MEC/HPC
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Degrees azimuth

Nayebi*, Kong* et al ]
PLOS Comp. Biol. (2023) Nayebi et al NeurIPS (2021)
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Next Steps: Buillding the Embodied Agent

How does the brain build and use world models?
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How does the brain build and use world models?

primate vision

Nayebi*, Bear*, Kubilius*

et al NeurlPS (2018)

Nayebi et al
Neural Computation (2022)

I. Recurrent Processing During 2. Visually-Grounded Mental

Object Recognition

primate & human
mental simulation

DMFC

Nayebi et al NeurlPS (2023)

Mouse Vvision rodent MEC/HPC

-60 0 60
Degrees azimuth
Nayebi*, Kong* et al .
PLOS Comp. Biol. (2023)  Nayebi et al NeurlPS (2021)
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Next Steps: Buillding the Embodied Agent

How does the brain represent, predict, plan, and enable action?

primate vision primate & human mouse vision  rodent MEC/HPC
mental simulation

DMFC

e )

Nayebi*, Bear*, Kubilius* ‘
-60 0 60

et al NeurlPS (2018) Degrees azimuth

Nayebi et al Nayebi*, Kong* et al

Neural Computation (2022) Nayebi et al NeurlPS (2023) PLOS Comp. Biol. (2023)  Nayebi et al NeurlPS (2021)
I. Recurrent Processing During 2. Visually-Grounded Mental 3.Vision and Navigation in Rodents

Object Recognition Simulation



Next Steps: Buillding the Embodied Agent

How does the brain represent, predict, plan, and enable action?

Sensory Perceptual Module
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Next Steps: Buillding the Embodied Agent

How does the brain represent, predict, plan, and enable action?

Sensory Perceptual Module
) St - . o Future Inference Module
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Next Steps: Bullding the Embodied Agent

How does the brain represent, predict, plan, and enable action?

Sensory Perceptual Module
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Next Steps: Buillding the Embodied Agent

How does the brain represent, predict, plan, and enable action?
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Next Steps: Buillding the Embodied Agent

How does the brain represent, predict, plan, and enable action?
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Next Steps: Buillding the Embodied Agent

How does the brain represent, predict, plan, and enable action?
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Next Steps: Buillding the Embodied Agent

How does the brain represent, predict, plan, and enable action?
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Next Steps: Buillding the Embodied Agent

How does the brain represent, predict, plan, and enable action?
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Next Steps: Applying the Embodied Agent
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Next Steps: Applying the Embodied Agent

How does the brain represent, predict, plan, and enable action?
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Next Steps: Applying the Embodied Agent

How does the brain represent, predict, plan, and enable action?
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Long-Term Outcome: Artificial Organisms

How does the brain represent, predict, plan, and enable action?
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