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The Mental Simulation Hypothesis

The Nature of Explanation _

My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and 1n every way
to react in a much fuller, safer, and more competent manner to the emergencies

which face it.
Craik (1943): The brain builds mental models of the external physical world,
that support physical inferences via mental simulations.

Kenneth Craik



The Mental Simulation Hypothesis

The Nature of Explanation Pre-dates the modern computer!

My hypothesis then is that thought models, or parallels, reality — that its essential
feature i1s not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies

which face it.
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The Mental Simulation Hypothesis: Behavioral Evidence
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The Mental Simulation Hypothesis: Behavioral Evidence

The Nature of Explanation
My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
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models of the external physical world,
that support physical inferences via
mental simulations.
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The Mental Simulation Hypothesis: Human Neuroimaging Evidence

The Nature of Explanation
My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies
which face it.

Craik (1943): The brain builds mental
models of the external physical world,
that support physical inferences via
mental simulations.
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The Mental Simulation Hypothesis: Human Neuroimaging Evidence
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The Mental Simulation Hypothesis: Primate Electrophysiological Evidence

The Nature of Explanation
My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies

which face it.

Craik (1943): The brain builds mental
models of the external physical world,
that support physical inferences via
mental simulations.
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The Mental Simulation Hypothesis: Primate Electrophysiological Evidence
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The Mental Simulation Hypothesis: Primate Electrophysiological Evidence
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Functional Constraints of Mental Simulation Across Environments?

Guiding Question: What are the
functional constraints that enable us to

predict the future state of our
environment across diverse settings?




Defining Hypotheses: Goal-Driven Approach
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Defining Hypotheses: Goal-Driven Approach

L = learning rule T = task loss
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+ plasticity” behavior”
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R2 (Behavioral Outputs): Generate physical
predictions for each scenario (“behavior”).

R3 (Neural Representations): Consist of internal

units that can be compared to biological units
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Defining Hypotheses: Goal-Driven Approach

L = learning rule T = task loss
“Natural selection o , “Ecological niche/
+ plasticity” Sensory-Cognitive Networks behavior”

R1 (Input-Driven): Take in unstructured visual
iInputs across a range of physical phenomena.

R2 (Behavioral Outputs): Generate physical
predictions for each scenario (“behavior”).

R3 (Neural Representations): Consist of internal

units that can be compared to biological units
(e.g. containing “artificial neurons”).
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Comparing Oracle Models to Human Physical Prediction
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Comparing Oracle Models to Human Physical Prediction
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Comparing Oracle Models to Human Physical Prediction

Per-Scenario Accuracy
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Comparing Oracle Models to Human Physical Prediction
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Overall Approach

Inputs Sensory-Cognitive Hypothesis Classes

Guiding Question: What are the
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predict the future state of our
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Overall Approach
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Macaque Neurophysiology: Mental Pong

Inputs Sensory-Cognitive Hypothesis Classes Ground Truth
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Model Evaluations: Macague Neurophysiology

Dorsomedial frontal cortex (DMFC)

medial

dorsolateral

Fronto-Parietal Network

79 conditions
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- Data from two male adult monkeys

. 79 subsampled M-Pong conditions
- 64 channel v-probe (monkey P) and 384-channel Neuropixel probe (monkey M)

. Total of 1889 stable & reliable neurons recorded from DMFC

Rishi Rajalingham



Assessing Model Similarity: Neural Response Predictivity
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Macaque Neurophysiology: Mental Pong
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Macague Neurophysiology: Mental Pong
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Physical Simulation Oracles Predict Neural Data Well
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Functional Constraint Hypotheses

Inputs Sensory-Cognitive Hypothesis Classes

Physion

Dominoes Support




Hypothesis Class |: Pixel-wise Future Prediction
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Physical Simulation Oracles Predict Neural Data Well
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Pixel-wise Future Prediction Poorly Predicts Neurons
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Hypothesis Class 2: Object Slots
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Hypothesis Class 2: Object Slots
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Pixel-wise Future Prediction Poorly Predicts Neurons
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Object-Slot Future Prediction Poorly Predicts Neurons
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Object-Slot Future Prediction Poorly Predicts Neurons

Perhaps DMFC predicts a “factorized” version of the scene?
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Object-Slot Future Prediction Poorly Predicts Neurons

Perhaps DMFC predicts a “factorized” version of the scene?

/2 DMFC
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Hypothesis Class 3: Latent Future Prediction
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Hypothesis Class 3: Latent Future Prediction

Inputs Sensory-Cognitive Hypothesis Classes Ground Truth
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Learn a partial, implicit representation of the physical world by
performing a challenging vision task (“foundation model”)
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Hypothesis Class 3: Latent Future Prediction
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Learn a partial, implicit representation of the physical world by
performing a challenging vision task (“foundation model”)

Leverage these dynamics to do explicit future prediction



Hypothesis Class 3: Foundation Models
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VWhat vision task!?

Leverage these dynamics to do explicit future prediction




Hypothesis Class 3: Image Foundation Models




Object-Slot Future Prediction Poorly Predicts Neurons
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Image Foundation Future Prediction Poorly Predicts Neurons
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Hypothesis Class 3: Foundation Models
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We do far more than engage with static images!

Leverage these dynamics to do explicit future prediction




Hypothesis Class 3:Video Foundation Models

Ego4D: everyday activity around the world

Ego4D: A massive-scale egocentric dataset

3,670 hours of in-the-wild daily life activity
931 participants from 74 worldwide locations

Multimodal: audio, 3D scans, IMU, stereo, multi-camera

Grauman et al. 2022
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Hypothesis Class 3:Video Foundation Models

Majumdar et al. 2023
Ego4D: everyday activity around the world a
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Image Foundation Future Prediction Poorly Predicts Neurons
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Video Foundation Future Prediction Best Predict Neurons
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Video Foundation Future Prediction Best Predict Neurons

Being useful for Embodied Al tasks is not enough on
its own, need explicit future prediction!
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Video Foundation Future Prediction Best Predict Neurons

High-throughput neural response data strongly
arbitrates cognitive hypotheses

0.8
>
by e
-EEE Perfect simulation oracle Oracles
.\_J \WOG --------------------------------------------------
o] g Video Foundation Models
qh, ) b &
o ™~
_— 90.4 Iz
c VU ,
o e._ . Image Foundation Models
é Pixel-wise o_':::;i:t L .
I I ;
0.2— o I II I‘g I;/I :ul;é :
<r§ _Eg|T = §§ * / SRS
2% BF 30 . j Tz S22 T |7/ o282

Future Prediction



Assessing Model Similarity: Ground Truth State Decoding
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Predicting neurons Is relevant to simulating the ball
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Predicting neurons Is relevant to simulating the ball
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Macaque Neurophysiology: Mental Pong

Sensory-Cognitive Hypothesis Classes Ground Truth

Guiding Question: What are the functional constraints

that enable us to predict the future state of our
environment across diverse settings?
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Human Behavior: Object Contact Prediction

Latent Future Prediction:

2. Dynamics Pretraining Stage
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Object Contact Prediction Environment

Physion/ThreeD World (TDW) Bear et al. 2021




Human Behavior: Object Contact Prediction

“, Bear et al. 2021
'.‘ “Will the agent object contact the patient object?”

n=100

AGENT [PATIENT

Daniel Bear Joshua Tenenbaum Daniel Yamins Judith Fan
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Bear et al. 2021
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OCP Accuracy & Matching Human Error Patterns Are Related
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OCP Accuracy & Matching Human Error Patterns Are Related

A Cognitive Goal
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Comparing Visually-Grounded Models to Human Judgements
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Comparing Visually-Grounded Models to Human Judgements
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Pixel-wise future predictors are best in the same environment
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...but they struggle to generalize to Pong

Input Frames Predicted Frames

Ball stops at final input
frame, in the model’s
“Imagination”



Model Evaluations: What About Both Metrics?

(A) Model Pretraining
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Comparing to Both Human Behavioral and Neural Response Patterns
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Dynamically-Equipped Video Foundation Models Can Match Both
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Dynamically-Equipped Video Foundation Models Can Match Both
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Dynamically-Equipped Video Foundation Models Can Match Both
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Towards More Robust Future Inference
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Future Directions

1. Sensory: Better leverage temporal relationships to build a more
‘factorized” and reusable representation:
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Future Directions

1. Sensory: Better leverage temporal relationships to build a more
“factorized” and|reusable|representation:
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Future Directions

1. Sensory: Better leverage temporal relationships to build a more
‘factorized” and reusable representation: object-centric, video
foundation model”
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Principles of Object Perception Elizabeth Spelke, 1990 Elizabeth Spelke




Future Directions

1. Sensory: Better leverage temporal relationships to build a more
‘factorized” and reusable representation: object-centric, video
foundation model”

2. Cognitive: Does the “physics engine” use a hierarchy of
timescales to represent multiple possibilities?




~uture Directions: Learning

Diverse Material Properties

1. Sensory: Better leverage temporal relationships to build a more
‘factorized” and reusable representation: object-centric, video
foundation model”

2. Cognitive: Does the “physics engine” use a hierarchy of
timescales to represent multiple possibilities?

3. Data: More complex 2D and 3D scenes/real world objects



Future Directions: Learning Diverse Material Properties

1. Sensory: Better leverage temporal relationships to build a more
‘factorized” and reusable representation: object-centric, video
foundation model”

2. Cognitive: Does the “physics engine” use a hierarchy of
timescales to represent multiple possibilities?

3. Data: More complex 2D and 3D scenes/real world objects

| Soft-body interactions could be improved
| uniformly across models

0.301

o
N
U

(Peagson’s R)
S

Correlation to Average Human Response

Roll Collide  Support

Drop Contain




Takeaways

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”
Guiding Question: | f(w"

What are the functional constraints that enable us to predict the
future state of our environment across diverse settings!?

b * Zo,, X0\ //' 7
(7 > [ /,
K v A\ 'ést@
' $ bl
<
g ... (
7\ {
P—*)H 3@61 ")@/[

“Circuit® “Environment”
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A = architecture class



Takeaways

L = learning rule T = task loss
“Natural selection “Ecological niche/
+ plasticity” behavior”

latent future prediction
Guiding Question:
What are the functional constraints that enable us to predict the
future state of our environment across diverse settings?

SSL video foundation encoder +

recurrent neural network egocentric videos
“Circuit” “Environment”

D = datg stream

A = architecture class
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Takeaways

Guiding Question:

What are the functional constraints that enable us to predict the
future state of our environment across diverse settings!?
Findings:

Mental simulation crucially involves explicit future prediction of a
visual scene description.

This scene description is not fine-grained at the level of pixels, but
must be “factorized” somehow.

This factorization is strongly constrained. It does not appear to
represent fixed object slots, but rather a critical component is for it
to enable a wide range of dynamic sensorimotor abilities.
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