Goal-Driven Models of Physical Understanding

Aran Nayebi McGovern Institute, MIT

CS 375/Psych 249

Stanford University 2024.02.13

Visually-Grounded Mental Simulation

A. Nayebi, R. Rajalingham, M. Jazayeri, G.R. Yang Neural foundations of mental simulation: future prediction of latent representations on dynamic scenes. *NeurIPS 2023 (spotlight)*

Rishi Rajalingham

Mehrdad Jazayeri

Guangyu Robert Yang

https://arxiv.org/abs/2305.11772

Visually-Grounded Mental Simulation

A. Nayebi, R. Rajalingham, M. Jazayeri, G.R. Yang Neural foundations of mental simulation: future prediction of latent representations on dynamic scenes. *NeurIPS 2023 (spotlight)*

Guangyu Robert Yang

https://arxiv.org/abs/2305.11772

Motivation

Motivation

Motivation

H+ CO. LOI

Cotà

R

PRO-SE

I & GREEKE

LODGE

Motivation

Plan: How would I take these hats off the rack?

I R CHERTON

LODGE

Predict: Will this box support me?

> H+ CO.

LOI

Cata

R

Motivation

Plan: How would I take these hats off the rack?

I B GREEN

LODGE

Predict: Will this box support me?

> H+ CO.

LOI

cotà

R

Motivation

Plan: How would I take these hats off the rack?

I B GREEN

ODGE

Predict: Will this box support me?

> H+ CO.

LOI

cotà

R

The Nature of Explanation

My hypothesis then is that thought models, or parallels, reality – that its essential feature is not 'the mind', 'the self', 'sense-data', nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation...

If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it.

<u>Craik (1943)</u>: The brain builds **mental models** of the external physical world, that support physical inferences via **mental simulations**.

Kenneth Craik

The Nature of Explanation

Pre-dates the modern computer!

My hypothesis then is that thought models, or parallels, reality – that its essential feature is not 'the mind', 'the self', 'sense-data', nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation...

If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it.

<u>Craik (1943)</u>: The brain builds **mental models** of the external physical world, that support physical inferences via **mental simulations**.

Kenneth Craik

The Mental Simulation Hypothesis: Behavioral Evidence

The Nature of Explanation My hypothesis then is that thought models, or parallels, reality – that its essential feature is not 'the mind', 'the self', 'sense-data', nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation...

If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it.

Craik (1943): The brain builds mental models of the external physical world, that support physical inferences via mental simulations.

Focus on physical simulation

The Mental Simulation Hypothesis: Behavioral Evidence

The Nature of Explanation My hypothesis then is that thought models, or parallels, reality – that its essential feature is not 'the mind', 'the self', 'sense-data', nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation...

If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it.

Craik (1943): The brain builds mental models of the external physical world, that support physical inferences via mental simulations.

Intuitive Physics Engine (IPE) can match human physical judgements

Peter Battaglia

Tomer Ullman Jessica Hamrick

Joshua Tenenbaum

The Nature of Explanation My hypothesis then is that thought models, or parallels, reality – that its essential feature is not 'the mind', 'the self', 'sense-data', nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation...

If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it.

Craik (1943): The brain builds mental models of the external physical world, that support physical inferences via mental simulations.

The Brain's "Physics Engine"

Ullman et al. 2017

Fronto-Parietal Network

Battaglia, Hamrick, Tenenbaum 2013

The Nature of Explanation My hypothesis then is that thought models, or parallels, reality – that its essential feature is not 'the mind', 'the self', 'sense-data', nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation...

If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it.

Craik (1943): The brain builds mental models of the external physical world, that support physical inferences via mental simulations.

The Brain's "Physics Engine"

A network of brain regions recruited by physical inferences (Fischer et al. 2016)

2. Intuitive Physics Engine — 3. Outputs 1. Inputs Will it fall? Scene (t+1) - - - -Scene (t) Scene (t+n)

Battaglia, Hamrick, Tenenbaum 2013

Fischer et al. 2016

lason Fischer

Nancy Kanwisher

The Nature of Explanation My hypothesis then is that thought models, or parallels, reality – that its essential feature is not 'the mind', 'the self', 'sense-data', nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation...

If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it.

Craik (1943): The brain builds mental models of the external physical world, that support physical inferences via mental simulations.

The Brain's "Physics Engine"

- A network of brain regions recruited by physical inferences (Fischer et al. 2016)
- Contains information about mass (Schwettmann et al. 2019)

color

Schwettmann et al. 2019

Sarah Schwettmann

Nancy Kanwisher

The Nature of Explanation My hypothesis then is that thought models, or parallels, reality – that its essential feature is not 'the mind', 'the self', 'sense-data', nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation...

If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it.

Craik (1943): The brain builds mental models of the external physical world, that support physical inferences via mental simulations.

The Brain's "Physics Engine"

- A network of brain regions recruited by physical inferences (Fischer et al. 2016)
- Contains information about mass (Schwettmann et al. 2019
- Contains information about physical stability (Pramod et al. 2022

Fronto-Parietal Network

Battaglia, Hamrick, Tenenbaum 2013

Fischer et al. 2016

Schwettmann et al. 2019

RT Pramod

Nancy Kanwisher

The Mental Simulation Hypothesis: Primate Electrophysiological Evidence

DMFC

The Nature of Explanation My hypothesis then is that thought models, or parallels, reality – that its essential feature is not 'the mind', 'the self', 'sense-data', nor propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar to us in mechanical devices which aid thought and calculation...

If the organism carries a 'small-scale model' of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it.

Craik (1943): The brain builds mental models of the external physical world, that support physical inferences via mental simulations.

Battaglia, Hamrick, Tenenbaum 2013

Rishi Rajalingham

Mehrdad Jazayeri

The Mental Simulation Hypothesis: Primate Electrophysiological Evidence

The Mental Simulation Hypothesis: Primate Electrophysiological Evidence

Functional Constraints of Mental Simulation Across Environments?

Guiding Question: What are the functional constraints that enable us to predict the future state of our environment *across* diverse settings?

Fronto-Parietal Network

Rishi Rajalingham

Fixation acauire

Mehrdad Jazayeri

Schwettmann et al. 2019

L = learning rule

T = task loss

L = learning rule

"Natural selection + plasticity" T = task loss

"Ecological niche/ behavior"

L = learning rule

T = task loss

"Ecological niche/ behavior"

R1 (Input-Driven): Take in unstructured visual inputs across a range of physical phenomena.

L = learning rule

T = task loss

"Ecological niche/ behavior"

R1 (Input-Driven): Take in unstructured visual inputs across a range of physical phenomena.

R2 (Behavioral Outputs): Generate physical predictions for each scenario ("behavior").

"Circuit" A = architecture class

D = data stream

"Environment"

A = architecture class

Comparing Oracle Models to Human Physical Prediction

Visual Grounding of Learned Physical Models

Daniel Bear

Joshua Tenenbaum

Daniel Yamins

Judith Fan

Comparing Oracle Models to Human Physical Prediction

Comparing Oracle Models to Human Physical Prediction

 Humans are good but not perfect

Visual Grounding of Learned Physical Models

- Humans are good but not perfect
- Particle-input models match or exceed human performance

 having an explicit physical scene description helps tremendously!

Overall Approach

Macaque Neurophysiology: Mental Pong

Model Evaluations: Macaque Neurophysiology

Fronto-Parietal Network

Dorsomedial frontal cortex (DMFC)

Monkey P

- Data from two male adult monkeys
- 79 subsampled M-Pong conditions
- 64 channel v-probe (monkey P) and 384-channel Neuropixel probe (monkey M) •
- Total of 1889 stable & reliable neurons recorded from DMFC

Rishi Rajalingham

Macaque Neurophysiology: Mental Pong

Macaque Neurophysiology: Mental Pong

Physical Simulation Oracles Predict Neural Data Well

Functional Constraint Hypotheses

Hypothesis Class I: Pixel-wise Future Prediction

Hypothesis Class I: Pixel-wise Future Prediction

Hypothesis Class I: Pixel-wise Future Prediction

Physical Simulation Oracles Predict Neural Data Well

Pixel-wise Future Prediction Poorly Predicts Neurons

Hypothesis Class 2: Object Slots

Hypothesis Class 2: Object Slots

Predicts at the level of object slot representations and their relations

Pixel-wise Future Prediction Poorly Predicts Neurons

Hypothesis Class 3: Latent Future Prediction

Hypothesis Class 3: Latent Future Prediction

Learn a partial, *implicit* representation of the physical world by performing a challenging vision task (''foundation model'')

Hypothesis Class 3: Latent Future Prediction

Learn a partial, *implicit* representation of the physical world by performing a challenging vision task (''foundation model'')

Leverage these dynamics to do explicit future prediction

Hypothesis Class 3: Foundation Models

Learn a partial, *implicit* representation of the physical world by performing a challenging vision task (''foundation model'')

What vision task?

Leverage these dynamics to do explicit future prediction

Hypothesis Class 3: Image Foundation Models

Image Foundation Future Prediction Poorly Predicts Neurons

Hypothesis Class 3: Foundation Models

Learn a partial, *implicit* representation of the physical world by performing a challenging vision task (''foundation model'')

What vision task?

We do far more than engage with static images!

Leverage these dynamics to do explicit future prediction

Hypothesis Class 3: Video Foundation Models

Ego4D: everyday activity around the world

Ego4D: A massive-scale egocentric dataset

3,670 hours of in-the-wild daily life activity931 participants from 74 worldwide locationsMultimodal: audio, 3D scans, IMU, stereo, multi-camera

Hypothesis Class 3: Video Foundation Models

Image Foundation Future Prediction Poorly Predicts Neurons

Video Foundation Future Prediction Best Predict Neurons

Video Foundation Future Prediction Best Predict Neurons

Video Foundation Future Prediction Best Predict Neurons

Future Prediction

Best models approach ground truth state predictivity ceiling

Predicting neurons is relevant to simulating the ball

Predicting neurons is relevant to simulating the ball

Macaque Neurophysiology: Mental Pong

Human Behavior: Object Contact Prediction

Object Contact Prediction Environment

Physion/ThreeD World (TDW)

Bear et al. 2021

Focus on everyday physical understanding

Daniel

Yamins

Daniel Bear

loshua

Tenenbaum

Judith Fan

Human Behavior: Object Contact Prediction

Daniel Bear

Joshua Tenenbaum

um Daniel Yamins

Judith Fan

Completion Progress

Is the red object going to hit the yellow area?

OCP Accuracy & Matching Human Error Patterns Are Related

OCP Accuracy & Matching Haman Error Patterns Are Related

A Cognitive Goal

Comparing Visually-Grounded Models to Human Judgements

Comparing Visually-Grounded Models to Human Judgements

End-to-End

Latent Future Prediction

Pixel-wise future predictors are best in the same environment

...but they struggle to generalize to Pong

Input Frames

Predicted Frames

Ball stops at final input frame, in the model's "imagination"

Model Evaluations: What About Both Metrics?

Comparing to Both Human Behavioral and Neural Response Patterns

Dynamically-Equipped Video Foundation Models Can Match Both

Dynamically-Equipped Video Foundation Models Can Match Both

Dynamically-Equipped Video Foundation Models Can Match Both

Towards More Robust Future Inference

1. **Sensory:** Better leverage temporal relationships to build a more "factorized" *and* reusable representation:

 Sensory: Better leverage temporal relationships to build a more "factorized" and reusable representation:

1. **Sensory:** Better leverage temporal relationships to build a more "factorized" *and* reusable representation:

 Sensory: Better leverage temporal relationships to build a more "factorized" and reusable representation: object-centric, video foundation model?

Principles of Object Perception Elizabeth Spelke, 1990

Elizabeth Spelke

- Sensory: Better leverage temporal relationships to build a more "factorized" and reusable representation: object-centric, video foundation model?
- <u>Cognitive</u>: Does the "physics engine" use a hierarchy of timescales to represent multiple possibilities?

Future Directions: Learning Diverse Material Properties

- Sensory: Better leverage temporal relationships to build a more "factorized" and reusable representation: object-centric, video foundation model?
- 2. **Cognitive:** Does the "physics engine" use a hierarchy of timescales to represent multiple possibilities?
- 3. **Data:** More complex 2D and 3D scenes/real world objects

Future Directions: Learning Diverse Material Properties

- Sensory: Better leverage temporal relationships to build a more "factorized" and reusable representation: object-centric, video foundation model?
- <u>Cognitive</u>: Does the "physics engine" use a hierarchy of timescales to represent multiple possibilities?

3. **Data:** More complex 2D and 3D scenes/real world objects

L = learning rule

"Natural selection + plasticity" T = task loss
"Ecological niche/

behavior"

<u>Guiding Question:</u>

What are the functional constraints that enable us to predict the future state of our environment *across* diverse settings?

 $\mathbf{L} = learning rule$

T = task loss

"Ecological niche/ behavior"

egocentric videos

"Environment"

 $\mathbf{D} = data stream$

latent future prediction

Guiding Question:

What are the functional constraints that enable us to predict the future state of our environment *across* diverse settings?

SSL video foundation encoder + recurrent neural network

"Circuit"

Guiding Question:

What are the functional constraints that enable us to predict the future state of our environment *across* diverse settings?

<u>Findings:</u>

Mental simulation crucially involves explicit future prediction of a visual scene description.

Guiding Question:

What are the functional constraints that enable us to predict the future state of our environment *across* diverse settings?

Findings:

Mental simulation crucially involves explicit future prediction of a visual scene description.

This scene description is *not* fine-grained at the level of pixels, but must be "factorized" somehow.

Guiding Question:

What are the functional constraints that enable us to predict the future state of our environment *across* diverse settings?

Findings:

Mental simulation crucially involves explicit future prediction of a visual scene description.

This scene description is *not* fine-grained at the level of pixels, but must be "factorized" somehow.

This factorization is strongly constrained. It does *not* appear to represent fixed object slots, but rather a critical component is for it to enable a wide range of dynamic sensorimotor abilities.
Acknowledgements

Rishi Rajalingham

Guangyu Robert Yang

YangLab