A Model-Based Approach Towards Identifying the Brain's Learning Algorithms

MBCT Seminar

2021.01.25

Aran Nayebi

Neurosciences PhD Candidate Stanford University

Post-synaptic activities?

Post-synaptic activities? Synaptic strengths?

Post-synaptic activities? Relative Pre/Post changes? Synaptic strengths? Lillicrap et al.

Nat. Rev. Neurosci. (2020)

Why might this problem be worth considering?

Relaxing the weight symmetry requirement

Relaxing the weight symmetry requirement

Feedback Alignment (FA): B is random

Lillicrap et al. **Nat. Commun.** (2016)

Comparing Feedback Alignment to Backprop

Figure 2: Train (dashed) and test (solid) classification errors on CIFAR.

Scales as Backprop does on simple tasks

Figure 2: Train (dashed) and test (solid) classification errors on CIFAR.

Similar performance between FA and Backprop on small tasks.

Does not scale as Backprop does on harder tasks

Figure 3: Top-1 (solid) and Top-5 (dotted) test errors on ImageNet. Color legend is the same as for figure 2.

Weight Mirror (WM): B gradually aligns with W Feedback Alignment (FA): B is random

Akrout et al. **NeurIPS** (2019)

Weight Mirror does not transfer across architectures

Searching alternatives to Backprop scales across architectures

Current neural data is insufficient to separate these alternatives

Kunin*, Nayebi*, Sagastuy-Brena* et al. ICML (2020)

nature neuroscience

Article | Published: 02 November 2015

Inferring learning rules from distributions of firing rates in cortical neurons

Sukbin Lim, Jillian L McKee, Luke Woloszyn, Yali Amit, David J Freedman, David L Sheinberg & Nicolas Brunel ⊡

nature neuroscience

Article | Published: 02 November 2015

Inferring learning rules from distributions of firing rates in cortical neurons

Sukbin Lim, Jillian L McKee, Luke Woloszyn, Yali Amit, David J Freedman, David L Sheinberg & Nicolas Brunel ⊡

▶ Each session uses 125 novel & 125 familiar stimuli; macaque IT

nature neuroscience

Article | Published: 02 November 2015

Inferring learning rules from distributions of firing rates in cortical neurons

Sukbin Lim, Jillian L McKee, Luke Woloszyn, Yali Amit, David J Freedman, David L Sheinberg & Nicolas Brunel □

- ► Each session uses 125 novel & 125 familiar stimuli; macaque IT
- Infer transfer function (nonlinearity) from neuron's inputs to rates, assuming single architecture

nature neuroscience

Article | Published: 02 November 2015

Inferring learning rules from distributions of firing rates in cortical neurons

Sukbin Lim, Jillian L McKee, Luke Woloszyn, Yali Amit, David J Freedman, David L Sheinberg & Nicolas Brunel □

- ► Each session uses 125 novel & 125 familiar stimuli; macaque IT
- Infer transfer function (nonlinearity) from neuron's inputs to rates, assuming single architecture

Fit a Hebbian learning rule by assuming separable pre- and post-synaptic activities (e.g. Hebbian assumption)

nature neuroscience

Article | Published: 02 November 2015

Inferring learning rules from distributions of firing rates in cortical neurons

Sukbin Lim, Jillian L McKee, Luke Woloszyn, Yali Amit, David J Freedman, David L Sheinberg & Nicolas Brunel □

- ► Each session uses 125 novel & 125 familiar stimuli; macaque IT
- Infer transfer function (nonlinearity) from neuron's inputs to rates, assuming single architecture

Fit a Hebbian learning rule by assuming separable pre- and post-synaptic activities (e.g. Hebbian assumption)

Fits a single learning rule class (Hebbian) to data

"Virtual Experimental" Approach

What would you need to measure to reliably <u>distinguish</u> classes of learning rules?

"Virtual Experimental" Approach — Generate Predictions

What would you need to measure to reliably distinguish classes of learning rules?

With artificial neural networks, we can measure anything we want & know the ground truth learning rule we trained the model with

"Virtual Experimental" Approach — Generate Predictions

What would you need to measure to reliably distinguish classes of learning rules?

Hypothesis: measuring <u>post-synaptic activities</u> from a neural circuit on the order of several hundred units, may provide a good basis on which to identify learning rules.

"Virtual Experimental" Approach

Data Generation

10 architectures, 4 tasks, 12 hyperparameter settings, 4 learning rules

Generating a large-scale dataset

Learning Rules

SGD+Momentum (SGDM)

Adam

Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512)

Model seed (None, 0)

Dataset seed (None, 0)

Generating a large-scale dataset

Learning Rules

SGD+Momentum (SGDM)

Adam

Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512)

Model seed (None, 0)

Dataset seed (None, 0)

Generating a large-scale dataset

Learning Rules

SGD+Momentum (SGDM)

Adam

Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512)

Model seed (None, 0)

Dataset seed (None, 0)

Learning Rules

SGD+Momentum (SGDM)

Adam

Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512)

Model seed (None, 0)

Learning Rules

SGD+Momentum (SGDM)

Adam

Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512)

Model seed (None, 0)

Learning Rules

SGD+Momentum (SGDM)

Adam

Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512)

Model seed (None, 0)

Learning Rules

SGD+Momentum (SGDM)

Adam

Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512)

Model seed (None, 0)

Learning Rules

SGD+Momentum (SGDM)

Adam

Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512)

Model seed (None, 0)

"Virtual Experimental" Approach

Data Generation

Observable Statistics

Defining observable statistics

Weights

Proxy for synaptic strengths

Activations

Proxy for post-synaptic activities

Layer-wise Activity Changes

Proxy for relative change between pre- and post-synaptic activations

Defining observable statistics

Defining observable statistics

"Virtual Experimental" Approach

"Virtual Experimental" Approach

Is this problem even tractable?

Training Steps

Trajectories across network training appear highly distinctive

Framing it as a classification problem

How well can we do by framing it as a classification problem?

Sample is constructed from one layer of a trained network

General separability problem is tractable

Not driven by task performance (where definable)

SVM Random Forest

SVM Random Forest

SVM Random Forest

Adding Experimental Realism

Removing certain "animals" or "training curricula": holdouts of entire input classes

Access to only portions of the learning trajectory: subsampling observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise before collecting observables

Adding Experimental Realism

Removing certain "animals" or "training curricula": holdouts of entire input classes

Access to only portions of the learning trajectory: subsampling observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise before collecting observables

Animal "=" Architecture

Generalization to held-out "training curricula"

Adding Experimental Realism

Removing certain "animals" or "training curricula": holdouts of entire input classes

Access to only portions of the learning trajectory: subsampling observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise before collecting observables

Adding Experimental Realism

Removing certain "animals" or "training curricula": holdouts of entire input classes

Access to only portions of the learning trajectory: subsampling observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise before collecting observables

What insights could this approach potentially provide?

Different experimental tools have different limitations

Optical imaging techniques usually give us simultaneous access to thousands of units but can have lower temporal resolution and signal-to-noise

Electrophysiological recordings can have higher signal-to-noise and better temporal resolution, but can lack the coverage to thousands of units

Within typical imaging range of several hundred to several thousand synapses

Within typical electrophysiological range of several hundred units

Hypothesis: in vivo electrophysiological recordings of post-synaptic activities from a neural circuit on the order of several hundred units, frequently measured at wider intervals during the course of learning, may provide a good basis on which to identify learning rules

Hypothesis: in vivo electrophysiological recordings of post-synaptic activities from a neural circuit on the order of several hundred units, frequently measured at wider intervals during the course of learning, may provide a good basis on which to identify learning rules

We can identify learning rules *only* on the basis of aggregate statistics of observable measures: weights, activations, or layer-wise activity changes

Hypothesis: in vivo electrophysiological recordings of post-synaptic activities from a neural circuit on the order of several hundred units, frequently measured at wider intervals during the course of learning, may provide a good basis on which to identify learning rules

We can identify learning rules *only* on the basis of aggregate statistics of observable measures: weights, activations, or layer-wise activity changes

This observation holds across various scenarios of experimental realism of certain held-out input classes, trajectory undersampling, and unit undersampling & measurement noise, with network activations being the most robust

Acknowledgements

Thanks!

Sanjana Srivastava

Surya Ganguli

Daniel Yamins

Contact:

Email: anayebi@stanford.edu

Twitter: <u>@aran_nayebi</u>

NeurIPS 2020 Paper: https://arxiv.org/abs/2010.11765

Code & Dataset: https://github.com/neuroailab/lr-identify

Experimental collaborations welcome!