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Motivation

Why might this problem be worth considering?
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Feedback Alignment (FA)
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Comparing Feedback Alignment to Backprop
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Figure 2: Train (dashed) and test (solid) classification errors on CIFAR.
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Scales as Backprop does on simple tasks
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Does not scale as Backprop does on harder tasks
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test errors on ImageNet. Color legend 1s the
same as for figure 2.
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Imposing dynamics on the backward weights
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Weight Mirror (WM)
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Weight Mirror does not transfer across archrtectures
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Searching alternatives to Backprop scales across architectures
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Current neural data Is insufficient to separate these alternatives
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Can fit single learning rule to post-synaptic activities alone
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Fits a single learning rule class (Hebbian) to data
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“Virtual Experimental” Approach — Generate Predictions

What would you need to measure
to reliably distinguish classes of learning rules!?

Hypothesis: measuring post-synaptic activities from a neural
circuit on the order of several hundred units, may provide a good
basis on which to identify learning rules.
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“Virtual Experimental” Approach
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“Virtual Experimental” Approach
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Visualizing observables on ImageNet
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Framing It as a classification problem

How well can we do by framing it as a classification problem?

Sample is constructed from one layer of a trained network
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Not driven by task performance (where definable)
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Scale of observable statistics 1s not sufficient in most cases
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Scale of observable statistics 1s not sufficient in most cases
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Adding Experimental Realism
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input classes

Access to only portions of the learning trajectory: subsampling
observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise
before collecting observables
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Generalization to held-out “animals’
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Generalization to held-out “training curricula
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Adding Experimental Realism

Remoyving certain “animals” or “training curricula”: holdouts of entire
input classes

Access to only portions of the learning trajectory: subsampling
observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise
before collecting observables



Sparse subsampling across learning trajectory robust to trajectory undersampling
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Sampling across learning trajectory Is important for robustness to undersampling
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Adding Experimental Realism

Remoyving certain “animals” or “training curricula”: holdouts of entire
input classes

Access to only portions of the learning trajectory: subsampling
observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise
before collecting observables



What insights could this approach potentially provide?

Different experimental tools have different limitations

Optical imaging techniques usually give us simultaneous access to
thousands of units but can have lower temporal resolution and

signal-to-noise

Electrophysiological recordings can have higher signal-to-noise and
better temporal resolution, but can lack the coverage to thousands

of units



Modeling unit subsampling and measurement noise

“Ideal” noiseless, perfect information setting
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Weights are not robust to measurement noise and unit undersampling
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Activations are the most robust to measurement noise and unit undersampling
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intervals during the course of learning, may provide a good basis on which to identify
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Conclusions

Hypothesis: in vivo electrophysiological recordings of post-synaptic activities from

a neural circuit on the order of several hundred units, frequently measured at wider

intervals during the course of learning, may provide a good basis on which to identify
learning rules

We can identify learning rules only on the basis of aggregate statistics of observable
measures: weights, activations, or layer-wise activity changes

This observation holds across various scenarios of experimental realism of certain
held-out input classes, trajectory undersampling, and unit undersampling &
measurement noise, with network activations being the most robust
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