Task-Driven Convolutional Recurrent Neural Network Models of Dynamics in Higher Visual Cortex

SFN 2019 2019.10.21

 $Stanford \ Neuroscience \ and \ Artificial \ Intelligence \ Lab$

Object Recognition is Hard (But Easy for Us)

... thanks to the Ventral Stream

CNNs as Models of Object Recognition

~10-12 "Layers" Plausible based on anatomy and timing

DiCarlo, Zoccolan, & Rust 2012

~10-12 "Layers" Plausible based on anatomy and timing

So far, only explaining temporal average of responses

So far, only explaining temporal average of responses

site

site 2

site 296

-50

1

e.g. Binned spike counts 70ms-170ms post stimulus presentation

but actually the data is highly reliable at much finer grain — I Oms bins

Img 1

Img 2

Img **5760**

Simple feedforward networks simple dynamics:

Dynamics more interesting with bypasses:

Dynamics more interesting with bypasses, local recurrence:

Dynamics more interesting with bypasses, local recurrence, long-range feedback:

Dynamics result from recurrence

Feedbacks are everywhere anatomically:

... but what are they for?

Convolutional Recurrent Neural Networks (ConvRNNs)

Each time-step (10 ms) is treated equally — including feedforward steps

Many Choices of Local Recurrence

Two complementary principles:

(I) gating = multiplication by input-dependent tensor w/ values in [0, 1]

(2) **bypassing** = when recurrent cell is in 0 state, input is unchanged ("performance preserving")

Two complementary principles:

(I) gating = multiplication by input-dependent tensor w/ values in [0, 1]

(2) **bypassing** = when recurrent cell is in 0 state, input is unchanged ("ResNet-like")

LSTM has (I) but not (2); VanillaRNN has (2) but not (I)

Not All Local Recurrence is Equal

Not All Local Recurrence is Equal

Not All Local Recurrence is Equal

Search Over Local and Global Recurrence

Search Over Local and Global Recurrence

Emergent Local and Global Connectivity Patterns

Emergent Local and Global Connectivity Patterns

Neural Predictivity with ConvRNNs

Improved Neural Fit with ConvRNNs

Improved Neural Fit with ConvRNNs

Improved Neural Fit with ConvRNNs

Behavioral Comparison

How do we model behavioral decoding?

How do we model behavioral decoding?

- Final timestep: simply use the logits vector from the last timestep.
- Sum: sum the logits across the time dimension.
- Time average: average the logits across the time dimension.

More ideas for decoding

- Confidence weighting: take a weighted average of the logits. Weights are proportional to the maximum confidence at each timepoint.
- Weighted average variations: allow for the weights to to take a more general form and make them trainable. Learn them end-to-end.
- Maximum confidence: select the logits from the timepoint which contains the most highest confidence value.
- Confidence threshold: select the logits from the first timepoint at which the maximum confidence crosses a given threshold. We can learn the threshold.

Javier Sagastuy

Control Images

Feedforward Base Model

Control Images

Feedforward Base Model ConvRNN + Decoder

Control Images

Recurrent models correlate better with animal "challenge" dprimes

Feedforward Base Model

ConvRNN + Decoder

Deeper Feedforward Models

Control Images

 At scale, one has to be careful with the choice of local recurrent architecture introduced into CNNs to improve performance

- At scale, one has to be careful with the choice of local recurrent architecture introduced into CNNs to improve performance
 - With proper local recurrence in place, specific patterns of longrange feedback connections further improve performance

- At scale, one has to be careful with the choice of local recurrent architecture introduced into CNNs to improve performance
 - With proper local recurrence in place, specific patterns of longrange feedback connections further improve performance
- These performance-optimized dynamics provide strong estimates of neural and behavioral benchmarks in the primate ventral stream over feedforward & other recurrent models

- At scale, one has to be careful with the choice of local recurrent architecture introduced into CNNs to improve performance
 - With proper local recurrence in place, specific patterns of longrange feedback connections further improve performance
- These performance-optimized dynamics provide strong estimates of neural and behavioral benchmarks in the primate ventral stream over feedforward & other recurrent models
- These new convolutional recurrent architectures can be applied to many computer vision tasks (segmentation, movie prediction) without much modification

- At scale, one has to be careful with the choice of local recurrent architecture introduced into CNNs to improve performance
 - With proper local recurrence in place, specific patterns of longrange feedback connections further improve performance
- These performance-optimized dynamics provide strong estimates of neural and behavioral benchmarks in the primate ventral stream over feedforward & other recurrent models
- These new convolutional recurrent architectures can be applied to many computer vision tasks (segmentation, movie prediction) without much modification
- We can use these models to explore a variety of normative questions across the entirety of the ventral stream (VI,V4, dorsal stream)

Acknowledgements

Thanks!

Contact: anayebi@stanford.edu

Daniel Bear

Surya Ganguli

Javier Sagastuy

Jonas Kubilius

David Sussillo

Jim DiCarlo

Kohitij Kar

Funding:

Neurosciences PhD Program

Stanford Mind, Brain, Computation and Technology Training Program, Wu Tsai Neurosciences Institute