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Object Recognition i1s Hard (But Easy for Us)
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Stimulus ——» Neurons edd 5 Behavior




..thanks to the Ventral Stream

Stimulus

100ms
Visual

encoding

> Neurons

_—

V1 V2
000 | K
O %o B
0 - - - )

—~—

-

edd 5 Behavior

V4

PIT

CIT

AIT




CNNs as Models of Object Recognition
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Convolutional Neural Networks (CNNs)
Fukushima, 1979; Lecun, 1995

CNNs are inspired by visual neuroscience:
|) hierarchy
2) retinotopy (spatially tiled)
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...But, such Networks Are Far From Human Performance
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S0 far, only explaining temporal average of responses

img 1 blank img 2 blank img 5760

100ms 100ms 100ms 100ms 100ms

e.g. Binned spike counts /0ms-1/0ms post
stimulus presentation
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S0 far, only explaining temporal average of responses

img 1 blank img 2 blank img 5760

100ms 100ms 100ms 100ms 100ms

e.g. Binned spike counts /0ms-1/0ms post
stimulus presentation

but actually the data is highly reliable at much
finer grain— 1 0ms bins
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Simple feedforward networks simple dynamics:

time

courtesy Jonas Kubilius



Dynamics more interesting with bypasses:

bypass
concat

time

courtesy Jonas Kubilius



Trajectory Possibilities

Dynamics more interesting with bypasses, local recurrence:

conv :) duration
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T time
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image

courtesy Jonas Kubilius



Trajectory Possibilities

Dynamics more interesting with bypasses, local recurrence, long-range feedback:

conv :) duration
—
— D

bypass

conv
concat D

conv :)
>
T time
conv :) memory
/\ state, = conv,  + A - conv,
. X >
impulse transfer

courtesy Jonas Kubilius



Dynamics result from recurrence

Feedbacks are everywhere anatomically:

Gilbert & Li (2013)

... but what are they for?



Convolutional Recurrent Neural Networks (ConvRNNSs)

Feedforward Convolutions
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Improving ImageNet Performance with ConvRNNs

Feedforward Convolutions
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Many Choices of Local Recurrence

ResNet Block Vanilla RNN Cell
— —
LSTM Cell Reciprocal Gated Cell
—




Principles of Local Recurrence

Two complementary principles:

(1) gating = multiplication by input-dependent tensor w/ values in [0, |]

(2) bypassing = when recurrent cell is In O state, input is unchanged
(“performance preserving’)



Principles of Local Recurrence

Two complementary principles:

(1) gating = multiplication by input-dependent tensor w/ values in [0, |]

(2) bypassing = when recurrent cell is In O state, input is unchanged
(“ResNet-like™)

LSTM has (1) but not (2);VanillaRNN has (2) but not (1)



Not All Local Recurrence I1s Equal
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Not All Local Recurrence I1s Equal

Top1 Accuracy

Control = shortest path through network using all units once
gets at “Is multi-interaction recurrence really adding
anything?”
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Not All Local Recurrence i1s Equal
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Search Over Local and Global Recurrence
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Search Over Local and Global Recurrence
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EFmergent Local and Global Connectivity Patterns
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EFmergent Local and Global Connectivity Patterns
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Improving ImageNet Performance with ConvRNNs
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Improving ImageNet Performance with ConvRNNs
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Improving ImageNet Performance with ConvRNNs
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Improving ImageNet Performance with ConvRNNs

Can Match Performance of Deeper Models

with Both Local and Global Recurrence
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Neural Predictivity with ConvRNNs
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Improved Neural Frt with ConvRNNSs
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Improved Neural Frt with ConvRNNSs
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Improved Neural Frt with ConvRNNSs
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Behavioral Comparison
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How do we model behavioral decoding!

Feedforward Convolutions

ConvRNN Cells

o — |l — |l

A

Time
logits

Obj e Ct J Neurophysiol. 2001 Oct;86(4):1916-36.

Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey.
Category

Shadlen MN1, Newsome WT.

Decoder

Logits



How do we model behavioral decoding!

Feedforward Convolutions

ConvRNN Cells
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SImplest ideas for decoding

» Final timestep: simply use the logits vector from the last timestep.

» Sum: sum the logits across the time dimension.

» Time average: average the logits across the time dimension.



More ideas for decoding

» Confidence weighting: take a weighted average of the logits. VWeights are
proportional to the maximum confidence at each timepoint.

» Weighted average variations: allow for the weights to to take a more general form
and make them trainable. Learn them end-to-end.

» Maximum confidence: select the logits from the timepoint which contains the most
highest confidence value.

» Confidence threshold: select the logits from the first timepoint at which the
maximum confidence crosses a given threshold. We can learn the threshold.

Javier Sagastuy




Recurrent models correlate better with animal “challenge™ dprimes
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Recurrent models correlate better with animal “challenge™ dprimes

Feedforward Base Model
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Recurrent models correlate better with animal “challenge™ dprimes

Feedforward Base Model
ConvRNN + Decoder
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Recurrent models correlate better with animal “challenge™ dprimes

Feedforward Base Model
ConvRNN + Decoder

Control Images
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Takeaways Al/Performance  Neuroscience

> At scale, one has to be careful with the choice of local recurrent
architecture introduced into CNNs to improve performance

> With proper local recurrence in place, specific patterns of long-
range feedback connections further improve performance

> These performance-optimized dynamics provide strong
estimates of neural and behavioral benchmarks in the primate
ventral stream over feedforward & other recurrent models

> These new convolutional recurrent architectures can be applied
to many computer vision tasks (segmentation, movie prediction)
without much modification

> We can use these models to explore a variety of normative
questions across the entirety of the ventral stream (V1,V4,
dorsal stream
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