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Object Recognition is Hard (But Easy for Us)



…thanks to the Ventral Stream
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CNNs as Models of Object Recognition
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CNNs are inspired by visual neuroscience:
   1) hierarchy
   2) retinotopy (spatially tiled)

Convolutional Neural Networks (CNNs) 
Fukushima, 1979; Lecun, 1995



~10-12 “Layers” Plausible based on anatomy and timing

DiCarlo, Zoccolan, & Rust 2012
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…But, such Networks Are Far From Human Performance
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but actually the data is highly reliable at much  
finer grain —10ms bins
          



Trajectory Possibilities

Simple feedforward networks simple dynamics:

courtesy Jonas Kubilius



Dynamics more interesting with bypasses:

courtesy Jonas Kubilius

Trajectory Possibilities



Dynamics more interesting with bypasses, local recurrence:

courtesy Jonas Kubilius

Trajectory Possibilities



Dynamics more interesting with bypasses, local recurrence, long-range feedback:

courtesy Jonas Kubilius

Trajectory Possibilities



Dynamics result from recurrence

Feedbacks are everywhere anatomically:

Gilbert & Li (2013)

. . . but what are they for? 



Convolutional Recurrent Neural Networks (ConvRNNs)
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Improving ImageNet Performance with ConvRNNs
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Feedforward Convolutions

Long-Range Feedback

ConvRNN Cells

Each time-step (10 ms) is treated 
equally — including feedforward 
steps



Many Choices of Local Recurrence

Vanilla RNN CellResNet Block

LSTM Cell Reciprocal Gated Cell



Principles of Local Recurrence

Two complementary principles:

(1) gating = multiplication by input-dependent tensor w/ values in [0, 1]

(2) bypassing = when recurrent cell is in 0 state, input is unchanged 
(“performance preserving”)



(1) gating = multiplication by input-dependent tensor w/ values in [0, 1]

(2) bypassing = when recurrent cell is in 0 state, input is unchanged 
(“ResNet-like”)

Principles of Local Recurrence

Two complementary principles:

LSTM has (1) but not (2); VanillaRNN has (2) but not (1)



Not All Local Recurrence is Equal
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Control = shortest path through network using all units once
gets at “is multi-interaction recurrence really adding 
anything?”
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Emergent Local and Global Connectivity Patterns
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Improving ImageNet Performance with ConvRNNs



Improving ImageNet Performance with ConvRNNs
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Improving ImageNet Performance with ConvRNNs



Improving ImageNet Performance with ConvRNNs

Can Match Performance of Deeper Models 
with Both Local and Global Recurrence 
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Binned spike counts 70ms-170ms post stimulus 
presentation
          

Neural Predictivity with ConvRNNs
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Improved Neural Fit with ConvRNNs
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Improved Neural Fit with ConvRNNs
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… even in range before 250ms (rough saccade time)

Behavioral Comparison
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So how should we 
decode?

How do we model behavioral decoding?



‣ Final timestep: simply use the logits vector from the last timestep.

‣ Sum: sum the logits across the time dimension.

‣Time average: average the logits across the time dimension.

Simplest ideas for decoding



‣Confidence weighting: take a weighted average of the logits. Weights are 
proportional to the maximum confidence at each timepoint. 

More ideas for decoding

‣Weighted average variations: allow for the weights to to take a more general form 
and make them trainable. Learn them end-to-end.

‣Maximum confidence: select the logits from the timepoint which contains the most 
highest confidence value. 

‣Confidence threshold: select the logits from the first timepoint at which the 
maximum confidence crosses a given threshold. We can learn the threshold. 

Javier Sagastuy



Control Images Challenge Images

Recurrent models correlate better with animal “challenge” dprimes



Control Images Challenge Images

Feedforward Base Model

Recurrent models correlate better with animal “challenge” dprimes



Control Images Challenge Images

ConvRNN + Decoder
Feedforward Base Model

Recurrent models correlate better with animal “challenge” dprimes



Control Images Challenge Images

ConvRNN + Decoder
Feedforward Base Model

Deeper Feedforward Models

Recurrent models correlate better with animal “challenge” dprimes



Takeaways AI/Performance Neuroscience
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Takeaways

‣ At scale, one has to be careful with the choice of local recurrent 
architecture introduced into CNNs to improve performance

‣With proper local recurrence in place, specific patterns of long-
range feedback connections further improve performance

‣ These performance-optimized dynamics provide strong 
estimates of neural and behavioral benchmarks in the primate 
ventral stream over feedforward & other recurrent models

‣ These new convolutional recurrent architectures can be applied 
to many computer vision tasks (segmentation, movie prediction) 
without much modification

‣We can use these models to explore a variety of normative 
questions across the entirety of the ventral stream (V1, V4, 
dorsal stream)

AI/Performance Neuroscience
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