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Object Recognition i1s Hard (But Easy for Us)




...thanks to the Ventral Stream
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CNNs as Models of Object Recognition
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Convolutional Neural Networks (CNNs)
Fukushima, 1979; Lecun, 1995

CNNs are inspired by visual neuroscience:
|) hierarchy
2) retinotopy (spatially tiled)
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..But, such Networks Are Far From Human Performance
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S0 far, only explaining temporal average of responses

img 1 blank img 2 blank img 5760

100ms 100ms 100ms 100ms 100ms

e.g. Binned spike counts /0ms-1/0ms post
stimulus presentation
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S0 far, only explaining temporal average of responses

img 1 blank img 2 blank img 5760

100ms 100ms 100ms 100ms 100ms

e.g. Binned spike counts /0ms-1/0ms post
stimulus presentation

but actually the data is highly reliable at much
finer grain— 1 0ms bins
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Simple feedforward networks simple dynamics:
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courtesy Jonas Kubilius



Dynamics more interesting with bypasses:
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Trajectory Possibilities

Dynamics more interesting with bypasses, local recurrence:
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Trajectory Possibilities

Dynamics more interesting with bypasses, local recurrence, long-range feedback:

conv :) duration
—
— D
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conv :) memory
/\ state, = conv,  + A - conv,
. X >
impulse transfer

courtesy Jonas Kubilius



Dynamics result from recurrence

Feedbacks are everywhere anatomically:

Gilbert & Li (2013)

... but what are they for?



Convolutional Recurrent Neural Networks (ConvRNNSs)

Feedforward Convolutions
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Hypotheses for ConvRNNSs - Occlusions

Recurrent convolutional neural networks suppress occluders and enhance targets
in occluded object recognition

Courtney J. Spoerer (courtney.spoerer@mrc-cbu.cam.ac.uk)
Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK

Nikolaus Kriegeskorte (nikokriegeskorte@gmail.com)
Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK
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Hypotheses for ConvRNNSs - Top Down Feature Attention

CBMM Memo No. 047 April 12, 2016

Bridging the Gaps Between Residual Learning, Pe rFO rMance ga| ns

Recurrent Neural Networks and Visual Cortex

by only on quite small

Qianli Liao and Tomaso Poggio 4
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Feedback Networks

Amir R. Zamir'®* Te-Lin Wu'* Lin Sun'? William B. Shen’ Bertram E. Shi?
Jitendra Malik® Silvio Savarese'

! Stanford University * HKUST * University of California, Berkeley
http://feedbacknet.stanford.edu/

Accepted as a workshop contribution at ICLR 2015
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Improving ImageNet Performance with ConvRNNs

Feedforward Convolutions
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Many Choices of Local Recurrence

ResNet Block Vanilla RNN Cell
— —
LSTM Cell Reciprocal Gated Cell
—




Principles of Local Recurrence

Two complementary principles:

(1) gating = multiplication by input-dependent tensor w/ values in [0, |]

(2) bypassing = when recurrent cell is In O state, input is unchanged
(“performance preserving’)



Principles of Local Recurrence

Two complementary principles:

(1) gating = multiplication by input-dependent tensor w/ values in [0, |]

(2) bypassing = when recurrent cell is In O state, input is unchanged
(“ResNet-like™)

LSTM has (1) but not (2);VanillaRNN has (2) but not (1)



Not All Local Recurrence I1s Equal
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Not All Local Recurrence I1s Equal

Top1 Accuracy

Control = shortest path through network using all units once
gets at “Is multi-interaction recurrence really adding
anything?”
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Not All Local Recurrence i1s Equal
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Search Over Local and Global Recurrence
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Search Over Local and Global Recurrence
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EFmergent Local and Global Connectivity Patterns
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EFmergent Local and Global Connectivity Patterns
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Improving ImageNet Performance with ConvRNNs
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Improving ImageNet Performance with ConvRNNs

Can Match Performance of Deeper Models
with Both Local and Global Recurrence
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Neural Predictivity with ConvRNNs
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Improved Neural Frt with ConvRNNSs
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Improved Neural Frt with ConvRNNSs
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Improved Neural Frt with ConvRNNSs

1

e

L

Fit to Neural Data
[@n]
(O8]

e

2

3

i

Performance-Optimized
Recurrence

10

0-51 0.3 1
ConvRNN
0.3 - |
| /] | 0.11 " |
0.1 ‘ ’
Feedforward ‘ ’ ' |
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Time From Image Onset (ms)




Conclusion

» At scale, one has to be careful with the choice of local recurrent architecture
introduced into CNINs to improve performance
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Conclusion

» At scale, one has to be careful with the choice of local recurrent architecture
introduced into CNINs to improve performance

» Exhaustive hyperparameter optimization results in strong selection for gating and
bypassing Iin a local recurrent cell

» With proper local recurrence in place, specific patterns of long-range feedback
connections further improve performance

» These performance-optimized dynamics provide strong estimates of
neural dynamics in the primate ventral stream over feedforward

models

» Future work will explore the use of dynamic and self-supervised tasks
for matching neural responses
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