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Why has deep learning become so popular?

An effective tool for data inference problems.
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NNs are used as a tool in many disciplines

Zou, J., …, Telenti, A. A primer on deep learning in genomics, Nature Genetics, 2018

Krizhevsky, A., …, Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012

Bojarski, M., …, Zhao, J. End to End Learning for Self Driving Cars, arXiv, 2016




4

And they can be useful as a tool for neuroscience data
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Not the kind of models we will discuss
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Putting the Neural in Neural Network

Artificial NN Biological NN
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A Case Study: The Visual System

Guiding Questions:


Can we use “biologically-inspired” neural network 
models to provide normative (why?) & mechanistic 
(how?) insights into a neural circuit?


Can we also use these “biologically-inspired” 
networks to improve an AI goal?
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Roadmap

Current Approaches:


- Goal-Driven Modeling


- Direct Fits to Data
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Roadmap

Current Approaches:


- Goal-Driven Modeling


For what 
behavioral 
“goal” has 
the system 
been 
evolved for?




Classification, Segmentation, Localization, …
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Instance segmentation

Object localizationImage classification

Semantic segmentation

Lin et al. 2014

Eigen and Fergus 2015
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…which is somewhat feedforward
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…but also not just feedforward

Feedbacks are everywhere anatomically:

Gilbert & Li (2013)

. . . but what are they for? 
17



CNNs as Models of Object Recognition
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CNNs are inspired by visual neuroscience:

   1) hierarchy
   2) retinotopy (spatially tiled)


Convolutional Neural Networks (CNNs) 

Fukushima, 1979; Lecun, 1995
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but actually the data is highly reliable at much  
finer grain —10ms bins
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… even in range before 250ms (rough saccade time)



Overview

‣ Expand architecture class (local and global recurrence)


‣ Parametrize local and global feedback motifs and optimize for 
performance on ImageNet


‣ Evaluate neural predictivity in V4 and IT temporal responses
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Convolutional Recurrent Neural Networks (ConvRNNs)

Object

Category

Image (128px)

Feedforward Convolutions

Long-Range Feedback

ConvRNN Cells
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Each time-step (10 ms) is treated 
equally — including feedforward 
steps



Many Choices of Local Recurrence

Vanilla RNN CellResNet Block

LSTM Cell Reciprocal Gated Cell



Principles of Local Recurrence

Two complementary principles:

(1) gating = multiplication by input-dependent tensor w/ values in [0, 1]

(2) bypassing = when recurrent cell is in 0 state, input is unchanged 
(“performance preserving”)



(1) gating = multiplication by input-dependent tensor w/ values in [0, 1]

(2) bypassing = when recurrent cell is in 0 state, input is unchanged 
(“ResNet-like”)

Principles of Local Recurrence

Two complementary principles:

LSTM has (1) but not (2); VanillaRNN has (2) but not (1)
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Control = shortest path through network using all units once

gets at “is multi-interaction recurrence really adding 

anything?”



Not All Local Recurrence is Equal

FF

To
p1

 A
cc

ur
ac

y

Number of  Parameters x106

Vanilla RNN (T = 7)

Vanilla RNN (T = 16)

Reciprocal Gated (T = 7)

Reciprocal Gated (T = 16)

FF Deeper

LSTM (T = 7)

LSTM (T = 16)



Large-Scale Search over Deep Recurrent Architectures

‣ Expand architecture class (local and global recurrence)


‣ Parametrize local and global feedback motifs and optimize for 
performance on ImageNet


‣ Evaluate neural predictivity in V4 and IT temporal responses

Daniel Bear 

(Stanford)

Jonas Kubilius

      (MIT)

Nayebi, A.*, Bear, D.*, 
Kubilius, J.*,…, 
Yamins, D.L.K. Task-
Driven Convolutional 
Recurrent Models of 
the Visual System, 
NeurIPS 2018
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Emergent Local and Global Connectivity Patterns
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Improving ImageNet Performance with ConvRNNs
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Improving ImageNet Performance with ConvRNNs



Improving ImageNet Performance with ConvRNNs

Can Match Performance of Deeper Models 

with Both Local and Global Recurrence 



Role of Recurrence in Core Object Recognition

‣ Expand architecture class (local and global recurrence)


‣ Parametrize local and global feedback motifs and optimize for 
performance on ImageNet


‣ Evaluate neural predictivity in V4 and IT temporal responses

Daniel Bear 

(Stanford)

Jonas Kubilius

      (MIT)

Nayebi, A.*, Bear, D.*, 
Kubilius, J.*,…, 
Yamins, D.L.K. Task-
Driven Convolutional 
Recurrent Models of 
the Visual System, 
NeurIPS 2018
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presentation

          

Neural Predictivity with ConvRNNs
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Temporal Neural Fit with ConvRNNs
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Temporal Neural Fit with ConvRNNs
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Improved Neural Fit with ConvRNNs
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Takeaways

‣ At scale, one has to be careful with the choice of local recurrent 
architecture introduced into CNNs to improve performance


‣With proper local recurrence in place, specific patterns of long-
range feedback connections further improve performance


‣ These performance-optimized dynamics provide strong 
estimates of neural and behavioral metrics in the primate ventral 
stream over feedforward & other recurrent models


‣ These new convolutional recurrent architectures can be applied 
to many computer vision tasks (segmentation, movie prediction) 
without much modification


‣We can use these models to explore a variety of normative 
questions across the entirety of the ventral stream (V1, V4, 
dorsal stream)

AI/Performance Neuroscience
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Retinal Circuitry

Credit: S. A. Baccus



Traditional models of sensory encoding

Average feature that precedes a spike
Credit: S. A. Baccus
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Drawbacks of LN Model

Ignores multiple cell types in a single 
“layer”


Lack of multi-stage processing


How much do these matter?

Credit: S. A. Baccus



CNN Models of the Retina

McIntosh, L.*, Maheswaranathan, N.*, Nayebi, A., Baccus, S. Deep Learning Models of the Retinal Response to Natural 
Scenes, NIPS 2016


Lane McIntosh

   (Stanford)

Niru Maheswaranathan

         (Stanford)



Held-Out Performance



Are the deep network’s “computational mechanisms” for generating neural responses the same as those in the brain?

Eye Smarter than Scientists Believed.

Tim Gollisch, Markus Meister (2009)

Scientific hypotheses in neuroscienceDeep learning model

Can we  
bridge the Gap?

Credit: H. Tanaka



Unified Mechanistic Model

Maheswaranathan, N.*, McIntosh, L.*, 
…, Baccus, S. Deep learning models 
reveal internal structure and diverse 
computations in the retina under natural 
scenes, bioArxiv 2018
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Mechanistic Predictions - Omitted Stimulus Response

Tanaka, H., Nayebi, A. Baccus, S, Ganguli, S. From deep learning to mechanistic understanding in neuroscience: the 
structure of retinal prediction, NeurIPS 2019


Hidenori Tanaka

   (Stanford)

Model output
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Schwartz et al. (2007)
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Q1. What computational mechanism causes the large amplitude burst?


Q2. How is the latency of the peak proportional to the period of the flashes?



Model Reduction Approach
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time
space spacespace

Identify “important” filters

Examine extracted sub-circuit

Tanaka, H., Nayebi, A. Baccus, S, Ganguli, S. From deep learning to mechanistic understanding in neuroscience: the 
structure of retinal prediction, NeurIPS 2019




OSR Mechanistic Prediction from Distilled Model

Tanaka, H., Nayebi, A. Baccus, S, Ganguli, S. From deep learning to mechanistic understanding in neuroscience: the 
structure of retinal prediction, NeurIPS 2019


3

2

6

B. Werner,…, L. Passaglia et al. (2008) J. Gao,…, M.J. Berry et al. (2009)

ON-OFF dual pathways model

cannot reproduce predictive latency

LRC circuit model

no resonance found in bipolar cells 
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Takeaways AI/Performance Neuroscience

‣ In areas where a high-level behavioral goal is not immediately 
clear, if we can collect sufficient data then we can fit deep 
models directly


‣Network models that are directly fit to ethologically-relevant 
stimuli generalize to other stimuli and recapitulate responses to 
simpler, structured stimuli


‣ In this data regime, models that more closely match the 
anatomical constraints of the system also generalize better on 
held-out data — can provide useful architectural insight into a 
retinal “front-end” which traditional CNN models lack

‣ They provide a unified mechanistic model, which we can 
distill and probe to yield new mechanistic hypotheses 
(“cheap” in-silico experiments)
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