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OpenAI Sora, 
February 2024

Q: What’s missing?

A:  Embodied agency & interaction.

Current AI Struggles to Understand the Physical World
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Why?
Animals & humans (currently) 
perform behaviors we’ve yet to 
engineer successfully in AI agents:
‣Prediction (requires world 
modeling) & planning (requires 
memory)

‣Adaptive motor control (requires 
embodiment)

 
‣Autonomy / online life-long 
learning (test-time reasoning is 
just the beginning: need to update 
the weights without forgetting 
everything!)

Why Reverse-Engineer Natural Intelligence?

The specific capabilities of humans & animals become our 
concrete engineering targets!
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2.
T = task loss = ecological niche/behavior

1.
A = architecture class = circuit neuroanatomy

3.
D = dataset = environment Sight

Touch

Hearing
Taste

Smell

4.
L = learning rule = natural selection +  synaptic plasticity
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D = data stream
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Contravariance Principle: The Harder the Task, the Less Solutions!

Rosa Cao

Daniel Yamins
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“Nothing in biology makes sense in light of evolution.”
- Theo Dobzhansky

“Nothing in the brain makes sense except in the light of behavior.”
- Gordon M. Shepherd

Our (slightly) modified credo:
“Nothing in (computational) neuroscience makes sense except in 

light of task-optimization.”
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Artificial Neural Network

Task-Optimized Modeling Approach

Design ML Algorithms Optimized to Perform Organism’s 
Behavior under Organism’s Constraints

Principles of Why Neural Responses Are As They Are
AND

Quantitatively Accurate & Practically Useful Brain Models
Yields: Brain

But what even counts as good here?
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Whole brain. . .

International Brain Laboratory 2022

Q: How are we going to make sense of all this data?

A:  Build embodied agents & check if their internals 
pass the NeuroAI Turing test on whole-brain data.

. . . awake, behaving animals

How to Reverse-Engineer Natural Intelligence?
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Contrastive learning tasks

High-level idea of these methods: make the representations 
non-trivially robust to data augmentations

(somewhat inspired by how we “sample” the world via head 
motion)

Training Input

MLP Further

CNN
Embedding

CNN

Closer

FurtherMLP

CNN: Convolutional Neural Network, MLP: Multi-Layer Perceptron

Encoder
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V1 data from Cadena et al.  Deep convolutional models improve predictions of macaque V1 responses to natural images PLoS Comp. Bio., (2019)

V4 & IT data from Majaj et al.  Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance J. Neurosci. (2015)

https://journals.plos.org/ploscompbiol/article?rev=2&id=10.1371/journal.pcbi.1006897
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Quantitatively accurate self-supervised model 
of a higher brain area.

Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo JJ, & Yamins D (2021). 
Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS)
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Can we do even better than 
categorization in other species?

Chengxu
Zhuang



A. Nayebi*, N.C.L. Kong*, C. Zhuang, J.L. Gardner, A.M. Norcia, D.L.K. Yamins
Mouse visual cortex as a limited resource system that self-learns an ecologically-general representation. 

PLOS Computational Biology 2023

Nathan C.L. Kong*
Chengxu Zhuang Justin L. Gardner

Anthony M. Norcia Daniel Yamins

Mouse Visual Cortex as a Task-General, Limited Resource System
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Contrastive Models Better Match Mouse Visual Cortex

V1

IT
V2

V4

Primates Mouse?

Mouse vision is less 
hierarchical!

What is the ecological reason why the mouse visual system prefers self-supervision?
Hypothesis: task-generality rather than functional specialization.

~90% of the 
NeuroAI 

Turing Test 
for this 
dataset
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High degree-of-freedom body (38/74 controllable degrees), keeping track of history 
over long timescales with high-dimensional, continuous inputs

Bence Ölveczky



Contrastive Models Yield Better Transfer Performance
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What about 
other sensory 

modalities 
beyond 
vision?



Tactile Processing

Trinity Chung* Yuchen Shen* Nathan C.L. Kong

To appear as a NeurIPS 2025 Oral!
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manipulating occluded and OOD 
objects

• Tactile hardware & sim is getting better!

• Tactile perception is still considerably 
under-explored in both neuroscience 
and robotics

• Many current tactile models are vision-
based instead of force/torque-based

Trinity’s search on arxiv...

# of tactile 

# of vision 

(both in the last 12 months)

We hypothesize that model 
architectures that mimics brain-like 
processing will yield better 
performance for tactile data.

e.g. UniTouch & Sparsh is trained on 
vision-based tactile sensors like 
Gelsight and DIGIT

https://arxiv.org/abs/2410.24090https://arxiv.org/abs/2305.00596
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Neural Evaluation: Results
inter-animal max1.34

• We’ve nearly passed the NeuroAI Turing Test, for this dataset at least
• Need more stimuli to evaluate with!

• ConvRNNs outperform feedforward/SSMs on realistic tactile 
recognition

• ConvRNNs best match neural responses in mouse barrel cortex

• Contrastive SSL matches supervised neural alignment, possibly 
suggesting a general-purpose representation in the somatosensory 
cortex (needs more neural data to explore this!)

Maximal NeuroAI Turing Test
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A. Nayebi, R. Rajalingham, M. Jazayeri, G.R. Yang
Neural foundations of mental simulation: future prediction of latent representations on dynamic scenes. 

NeurIPS 2023 (spotlight)

Rishi Rajalingham Mehrdad Jazayeri Guangyu Robert Yang

Reusable Latent Representations for Primate Mental Simulation
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Useful for image segmentation, 
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• How is it computationally 

formalized? 
• What does “success” here 

even mean?

Neuroscience has largely ignored 
autonomous, task-independent 
behavior. 
Intelligence is often attributed when 
goals are easily identifiable.

Slides credit: Reece Keller

Unlike games where RL has succeeded, the environment doesn’t have a dense 
reward function. It must be (somehow) internally generated by the organism!
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virtual reality navigation

1. Ecologically-relevant 
environment 

2. “Cognitive” states 
with clear behavioral 
readouts 

3. Large-scale multi-
area neural 
recordings

Mu et al., Cell (2019)
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Often leads to unethological behaviors! (or can be stuck on white noise)

θ ← (1 − γ)θ + γθ′￼
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Our approach: Incorporate priors

The zebrafish behavior depends 
on an ethological memory.  

memory = fixed or slowly adapting 
dynamics prior (a world model!)

This enables sensorimotor 
feedback error to be computed 
and tracked. 
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Question: What intrinsic drive explains this behavior?
Specifically, how should world-models be used to guide autonomous decisions in 
real-world situations (e.g. encountering unseen physics)?

build the most convincing model 
possible. 

Our philosophy:

• stimulus/image computable

• realistic physics

• flexible parameterization

Sensing

• The zebrafish behavior is driven by optic flow and 
proprioception. A basic vision model and state 
information is sufficient.

• The embodiment must afford a faithful comparison with 
the animal behavior.

• Behavioral signal is low dimensional -> embodiment can 
be low dimensional

• Open-source embodiments that capture basic ethology 
already exist!

Actuation
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Question: What intrinsic drive explains this behavior?
Specifically, how should world-models be used to guide autonomous decisions in 
real-world situations (e.g. encountering unseen physics)?

build the most convincing 
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Our philosophy:

• stimulus/image computable
• realistic physics

• flexible parameterization
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Question: What intrinsic drive explains this behavior?
Specifically, how should world-models be used to guide autonomous decisions in 
real-world situations (e.g. encountering unseen physics)?

Recall the planning section!
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How does the brain represent, predict, plan, and enable action?

Recurrence + Contrastive SSL? Latent Future Prediction?

Temporal integration of World Model-Progress-based curiosity?
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How does the brain represent, predict, plan, and enable action?
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Temporal integration of World Model-Progress-based curiosity?
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Safety Implications: What Happens Once We Get There?
How does the brain represent, predict, plan, and enable action?

Recurrence + Contrastive SSL? Latent Future Prediction?

Temporal integration of World Model-Progress-based curiosity?

Too many of these goals makes alignment intractable, 
even for computationally unbounded agents!

1. Intrinsic Barriers and Practical Pathways for Human-AI 
Alignment: An Agreement-Based Complexity Analysis Paper: https://arxiv.org/abs/2502.05934

https://arxiv.org/abs/2502.05934
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Safety Implications: What Happens Once We Get There?
How does the brain represent, predict, plan, and enable action?

Recurrence + Contrastive SSL? Latent Future Prediction?

Temporal integration of World Model-Progress-based curiosity?

One can guarantee “corrigibility”, where 
under the optimal agent policy, humans 

retain control. Involves only a small set of 
modular & lexicographically organized goals 
(paralleling the modular agent architecture), 

circumventing the barrier above.

2. Core Safety Values for Provably Corrigible Agents Paper: https://arxiv.org/abs/2507.20964

Too many of these goals makes alignment intractable, 
even for computationally unbounded agents!

1. Intrinsic Barriers and Practical Pathways for Human-AI 
Alignment: An Agreement-Based Complexity Analysis Paper: https://arxiv.org/abs/2502.05934

https://arxiv.org/abs/2507.20964
https://arxiv.org/abs/2502.05934
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Safety Implications: What Happens Once We Get There?
How does the brain represent, predict, plan, and enable action?

Recurrence + Contrastive SSL? Latent Future Prediction?

Temporal integration of World Model-Progress-based curiosity?

One can guarantee “corrigibility”, where 
under the optimal agent policy, humans 

retain control. Involves only a small set of 
modular & lexicographically organized goals 
(paralleling the modular agent architecture), 

circumventing the barrier above.

2. Core Safety Values for Provably Corrigible Agents Paper: https://arxiv.org/abs/2507.20964

Too many of these goals makes alignment intractable, 
even for computationally unbounded agents!

1. Intrinsic Barriers and Practical Pathways for Human-AI 
Alignment: An Agreement-Based Complexity Analysis Paper: https://arxiv.org/abs/2502.05934

Open: Can we scale corrigibility cost effectively?

https://arxiv.org/abs/2507.20964
https://arxiv.org/abs/2502.05934
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Paper: https://arxiv.org/abs/2505.186873. An AI Capability Threshold for Rent-Funded Universal Basic 
Income in an AI-Automated Economy

Potential Economic Implications of Alignment

https://arxiv.org/abs/2505.18687
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Paper: https://arxiv.org/abs/2505.186873. An AI Capability Threshold for Rent-Funded Universal Basic 
Income in an AI-Automated Economy

Potential Economic Implications of Alignment

Higher alignment costs (c) 
drive up UBI threshold

Open: Can we incorporate other values 
(besides control, which is “neutrally 

amoral”) that lead to longer term human 
well-being, especially if working for pay 

becomes no longer feasible in many cases?

https://arxiv.org/abs/2505.18687
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