Using Embodied Agents to Reverse-Engineer Natural Intelligence

Aran Nayebi

Assistant Professor

Machine Learning Department

Neuroscience Institute (core faculty), Robotics Institute (by courtesy)

Rl Seminar
2025.09.26

S
MACHINE LEARNING
DEPARTMENT

O
wll

Carnegie Mellon University ROBOTICS Carnegie Mellon
Neuroscience Institute INSTITUTE SCHOOL OF COMPUTER SCIENCE




Current Al Strugsles to Understand the Physical World

OpenAl Sora,
February 2024

@OpenAl Researc hv APlv ChatGPTv Safety ~Company v Search Login 7 ‘ Try ChatGPT ]

Creating video from tekt

Sorais an Akmodelthat can create realistic and
imaginativeiscenes from text instructions!

Read technical report

All videos on'this page were generated directly
by Sora without modification.




Current Al Strugsles to Understand the Physical World

OpenAl Sorq,
February 2024




Current Al Strugsles to Understand the Physical World

OpenAl Sorq,
February 2024




Current Al Strugsles to Understand the Physical World

OpenAl Sora,
February 2024

’ d .
. : - - ‘
» Ny \ } A
B Ve " - <1 S s N A
. - - - ] ‘\'-I _‘

il Q:What's missin
. < e - . VoY V ol 4

-

*
-

N J' !r a N
- » : ?\ <x
\g J 4

[ |

- . -
o )
4 -

A‘i\.
o’

g?




Current Al Strugsles to Understand the Physical World

OpenAl Sora,

February 2024
it Q \/\/hats m|ssmg7




Why Reverse-Engineer Natural Intelligence!
Why!




Why Reverse-Engineer Natural Intelligence!

Why!
Animals & humans (currently)
perform behaviors we’ve yet to
engineer successfully in Al agents:




Why Reverse-Engineer Natural Intelligence!

Why!
Animals & humans (currently)
perform behaviors we've yet to
engineer successfully in Al agents:

> Prediction (requires world
modeling) & planning (requires
memory%

> Adaptive motor control (requires
embodiment)

> Autonomy / online life-long
learning (test-time reasoning is
just the beginning: need to update
the weights without forgetting
everything!)




Why Reverse-Engineer Natural Intelligence!

Why!
Animals & humans (currently)
perform behaviors we've yet to
engineer successfully in Al agents:

> Prediction (requires world
modeling) & planning (requires
memory%

> Adaptive motor control (requires
embodiment)

> Autonomy / online life-long
learning (test-time reasoning is
just the beginning: need to update
the weights without forgetting
everything!)
The specific capabilities of humans & animals become our
concrete engineering targets!
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Task-Optimized Modeling: Four Components

L = learning rule T = task loss

“Natural selection ““Ecological niche/
+ plasticity” behavior”

B Dorsal pathway

“Environment” “Circuit”

D = data stream A = architecture class
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Task-Optimized Modeling

Behavior under Organism’'s Constraints

Design ML Algorithms Optimized to Perform Organism’s
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Contravariance Principle: The Harder the Task, the Less Solutions!
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Figure 6. The Multitask Scaling Hypothesis: Models trained
with an increasing number of tasks are subjected to pressure to
learn a representation that can solve all the tasks.

The Multitask Scaling Hypothesis

There are fewer representations that are competent
for N tasks than there are for M < N tasks. As we
train more general models that solve more tasks at
once, we should expect fewer possible solutions.




Platonic Representation Hypothesis is the Al version of Contravariance

“Nothing in biology makes sense in light of evolution.”
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Task-Optimized Modeling Approach

Design ML Algorithms Optimized to Perform Organism’s
Behavior under Organism’s Constraints

But what even counts as good here”

Artificial Neural Network Yields: Brain

Quantitatively Accurate & Practically Useful Brain Models
AND

Principles of Why Neural Responses Are As They Are



NeuroAl Turing Test

Brain-Model Evaluations Need the NeuroAl Turing Test

Jenelle Feather ! Meenakshi Khosla“? N. Apurva Ratan Murty “3 Aran Nayebi " *

Ratan Murty



NeuroAl Turing Test

Ratan Murty



NeuroAl Turing Test

Ratan Murty

Just as distinct objects
can cast the same shadow...

Turing Test

£

/ human-to-human

compare with
human distribution

L
|
S 4y

behavior
only

.

~

J




NeuroAl Turing Test

Just as distinct objects ...distinct internal processes
can cast the same shadow... (representations) can produce

§§ similar outputs (behavior)
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How to Reverse-Engineer Natural Intelligence?

Q: How are we going to make sense of all this data?

\‘g\ o
u&%\ W

A: Build embodied agents & check if their internals
pass the NeuroAl Turing test on whole-brain data.
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How does the brain represent, predict, plan, and enable action?
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Long-Term Outcome: Artificial Organisms

How does the brain represent, predict, plan, and enable action?
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Roadmap: Perception

How does the brain represent, predict, plan, and enable action?
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labels during learning.

Effective proxy, but just obviously deeply wrong.
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Contrastive learning tasks

Training Input

_ I S Embedding
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CNN: Convolutional Neural Network, MLP: Multi-Layer Perceptron

High-level idea of these methods: make the representations
non-trivially robust to data augmentations

(somewhat inspired by how we “sample” the world via head
motion)



Comparison to Neural Data

How well does it match neural data?
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Mouse Visual Cortex as a lask-General, Limited Resource System

A. Nayebi*, N.C.L. Kong*, C. Zhuang, ].L. Gardner, A.M. Norcia, D.L.K.Yamins
Mouse visual cortex as a limited resource system that self-learns an ecologically-general representation.
PLOS Computational Biology 2023

g 44

Nathan C.L. Kong*

Anthony M. Norcia Daniel Yamins
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Contrastive Models Better Match Mouse Visual Cortex

*  Mouse vision is less
. hierarchicall

What is the ecological reason why the mouse visual system prefers self-supervision?
Hypothesis: task-generality rather than functional specialization.
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High degree-of-freedom body (38/74 controllable degrees), keeping track of history
over long timescales with high-dimensional, continuous inputs
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Tactile Processing
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We’ve nearly passed the NeuroAl Turing Test, for this dataset at least
* Need more stimuli to evaluate with!

 ConvRNNs outperform feedforward/SSMs on realistic tactile
recognition

« ConvRNNSs best match neural responses in mouse barrel cortex

* Contrastive SSL matches supervised neural alignment, possibly
suggesting a general-purpose representation in the somatosensory
cortex (needs more neural data to explore this!)
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Reusable Latent Representations for Primate Mental Simulation

A. Nayebi, R. Rajalingham, M. Jazayeri, G.R.Yang
Neural foundations of mental simulation: future prediction of latent representations on dynamic scenes.
NeurlPS 2023 (spotlight)

Rishi Rajalingham Mehrdad Jazayeri Guangyu Robert Yang
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Learn a partial, implicit representation of the physical world by
performing a challenging vision task (“foundation model”)

What vision task?
We do far more than engage with static images!

Leverage these dynamics to do explicit future prediction
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A Task-Optimized Account of Heterogenerty

Grid Cells
More like ~2-3%!

Heterogeneous Cells

Border Cells
Heterogeneous cell types
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Roadmap: Action

How does the brain represent, predict, plan, and enable action?

Recurrence + Contrastive SSL? | atent Future Prediction?
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Intrinsic Goals & Animal Autonomy

Autonomous Behavior and Whole-Brain Dynamics
Emerge in Embodied Zebrafish Agents with
Model-based Intrinsic Motivation

Reece Keller''>* Alyn Tornell> Felix Pei’ Xaq Pitkow':
Leo Kozachkov*' Aran Nayebi®!?1

To appear at NeurlPS 2025!
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Why is Animal Autonomy Hard?

The behavioral repertoire i1s enormous...

. ] y

« What is the motivation/goal?"

y « How is it computationally
" formalized? = "

y j %
£+ What does success here

even mean? = g

Neuroscience has largely ignored
autonomous, task-independent
behavior.

Intelligence is often attributed when
goals are easily identifiable.

Unlike games where RL has succeeded, the environment doesn’'t have a dense
reward function. It must be (somehow) internally generated by the organism!
Slides credit: Reece Keller
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Machine Autonomy: Prior Work

Exploration in sparse/reward-iree environments

Curiosity type Formulation What it measures
surprise rl x —log wy(s' | s, a) orediction error
. l- , N orediction
Disagreement ri &« Var <{wg.(s | s, a)}j=1> |
/ variance
. Ho o orediction error
Learning progress LS s | 5. a) qair

0 — (1—7)0+ 70

Kim et al., ICML (2020)
Pathak et al., ICML (2017)
Burda, Edwards & Pathak et al., NeurlPS (2017)
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Machine Autonomy: Prior Work
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Kim et al., ICML (2020)
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Burda, Edwards & Pathak et al., NeurlPS (2017)

Often leads to unethological behaviors! (or can be stuck on white noise)



Epistemic Curiosity isnt .

Animal autonomy = novelty optimization

Training step (1e6)
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- Rewards can perseverate on
unpredictable/uncontrollable stimuli.
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Our approach: Incorporate priors

The zebrafish behavior depends
on an ethological memory.

memory = fixed or slowly adapting
dynamics prior (a world model!)

This enables sensorimotor
feedback error to be computed
and tracked.
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Question: What intrinsic drive explains this behavior?

Specifically, how should world-models be used to guide autonomous decisions in
real-world situations (e.g. encountering unseen physics)?
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Actuation

- The embodiment must afford a faithful comparison with
the animal behavior. Our philosophy:

- Behavioral signal is low dimensional -> embodiment can
be low dimensional

- Open-source embodiments that capture basic ethology
already exist!

build the most convincing model
possible.

. stimulus/image computable
Sensing - realistic physics

- The zebrafish behavior is driven by optic flow and - flexible parameterization
proprioception. A basic vision model and state
information is sufficient.



Question: What intrinsic drive explains this behavior?

Specifically, how should world-models be used to guide autonomous decisions in
real-world situations (e.g. encountering unseen physics)?

Zebrafish Agent Architecture
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Question: What intrinsic drive explains this behavior?

Specifically, how should world-models be used to guide autonomous decisions in
real-world situations (e.g. encountering unseen physics)?

SM-Progress

Using ethological memory to guide adaptive behavior

Ti(s"|s,a)

B unethological

™ wp(s’ | s,a)

We choose 77 and T to obey:
JUCSXA s.t. V(s,a)eU, T~ T,

(dynamics agree on a subspace).

3M: Model-Memory-Mismatch

0)9'.'

T5(s’ | s,a) /—\jistill via experience

€, partitions the state-action space into model-
memory agreement (U) and disagreement (U©).

rti X |ét_€t|
3M-Progress €&, =1 —-ype_1+7re

memories agree i memories disagree |




Question: What intrinsic drive explains this behavior?

Specifically, how should world-models be used to guide autonomous decisions in
real-world situations (e.g. encountering unseen physics)?

BM—:_DIOQIGSS /Recall the planning section!

Using lethological memory|to guide adaptive behavior

Ti(s"|s,a) 3M: Model-Memory-Mismatch

B unethological TZ(S | S, a) distill via experience

€, partitions the state-action space into model-
memory agreement (U) and disagreement (U©).

we<s 's.a) o |6—¢)
3M-Progress €&, = —yé,_1+ 7€

memories agree i memories disagree |

‘/
head ﬁxed

We choose 77 and T to obey:
JUCSXA s.t. V(s,a)eU, T~ T,

(dynamics agree on a subspace).
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Putting 1t all together

3M-Progress Captures Whole-Brain Dynamics

Single-cell one-to-one alignment
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Roadmap: Planning & Action

How does the brain represent, predict, plan, and enable action?
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Safety Implications: What Happens Once We Get There!?

How does the brain represent, predict, plan, and enable action?
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Safety Implications: What Happens Once We Get There!?

How does the brain represent, predict, plan, and enable action?

Too many of these goals makes alignment intractable,
even for computatlonally unbounded agents'
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Safety Implications: What Happens Once We Get There!?

How does the brain represent, predict, plan, and enable action?

Too many of these goals makes alignment intractable,

even for computationally unbounded agents'
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One can guarantee “corrigibility”’, where
under the optimal agent policy, humans
retain control. Involves only a small set of é-P
modular & lexicographically organized goals
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Open: Can we_scale corrigibility cost effectively?
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Figure 1: Projected AI capabilities (v;) vs. time-varying UBI Al capability threshold (v;). The dashed line is the required
capability «; to fully fund a UBI that comprises 11% of the GDP (leading to a v; between 5-6x the pre-Al productivity on
automated tasks, under current economic assumptions). Under fast scaling (Al capability doubling every year), AI would cross
the threshold by the late 2020s. Semi-fast scaling (doubling every 2 years) reaches the threshold in the early 2030s, whereas
moderate (doubling every 5 years) and slow (doubling every 10 years) scenarios achieve v} by 2038 and 2052, respectively. The
trajectories are illustrative, starting from a nominal, conservative 2025 capability level (79 = 1), which assumes Al currently
delivers no boost beyond the pre-Al automation level in aggregate across all automated tasks.
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Potential Economic Implications of Alignment

Open: Can we incorporate other values
(besides control, which is “neutrally
amoral”) that lead to longer term human
well-being, especially if working for pay
becomes no longer feasible in many cases?
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