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» What should the dynamics on the backward weights be?
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Imposing dynamics on the backwards weights

» Some previous proposals:

» Feedback Alignment [1]: no dynamics. B is fixed, random
AB; =0

» Weight Mirror [2]: feedforward neurons noisily discharge onto
the backward path. Use a Hebbian update with this noise and add
welight decay.

AB; =nxiz),; — AwmDB

» Kolen-Pollack [2,3]: use the same update on B as you would
use on W and add weight decay.

AB[ = —77331@2-4_1 — )\KPBZ

» Idea: think of backwards welights updates as derivatives of a loss function
» Integrates well with the current Deep Learning stack
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> |. Task Performance

» Animal must perform well at a behavior. Bartunov et al. (201 8)
point out lack of scalability of prior proposals.

» ImageNet top-1| validation accuracy, since performance-optimized
CNNs provide the most effective model of neural responses
throughout the primate ventral visual pathway (Yamins et al.,, 2014;

Cadena et al,, 2019).
>1l. Metaparameter Robustness

» Metaparameters that work well for a particular learning rule
should transfer well to different and deeper architectures.

» ImageNet top-| validation accuracy across models for fixed
metaparameters.
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Weight Mirror: Iiterature

Rwm= »  aP™ + gpecs
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Learning Rule Top-1 Val Accuracy
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Weight Mirror: Iiterature
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Local Learning Rules: Weight Mirror

Weight Mirror: optimized metaparameters

Rwm= » aP™ 4 BPs
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Weight Mirror: optimized metaparameters
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L ocal Learning Rules: Weight Mirror

Weight Mirror: optimized metaparameters

Rwn = Z QPP 4 57;;160'@ » Why is weight mirror unstable?
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L ocal Learning Rules: Weight Mirror

Weight Mirror: optimized metaparameters
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Local Learning Rules: Improved Metaparameter Robustness

Weight Mirror: adding an adaptive optimizer
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Local Learning Rules: Improved Metaparameter Robustness

Weight Mirror: adding an adaptive optimizer and normalizing operations
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Oja-style Stabilization of Weight Mirror

» [he update given by WM (without decay) 1s Hebbian

» Purely Hebbian learning rules are unstable

» WM adds weight decay to prevent diverging norms

» An alternative strategy to stabilizing Hebbian dynamics given by Oja
(1982) for learning dynamics of linear neurons
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A More Robust Local Learning Rule

Weight Mirror Information Alignment
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Non-Local Learning Rules

Weight Mirror Symmetric Alignment
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Non-Local Learning Rules

Weight Mirror Activation Alignment
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Weight Estimation
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Weight Estimation: Regression Discontinurty Design

B Eay
L]
{ b1 . g
: T ;
*'"vl ---------------------------- s SR A1) W i
| T .
o bo [+1 i} g b2
L]

[ 1] Lansdell, B. J. and Kording, K. P Spiking allows neurons to estimate their causal effect. bioRxiv, pp. 253351, 2019.
[2] Guerguiev, J., Kording, K. B, and Richards, B. A. Spike-based causal inference for weight alignment. arXiv:1910.01689 [cs, g-bio], October 2019.



Non-Local Learning Rules: Robust to noisy updates
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» Local learning rule that transfers more robustly across archrtectures
than previous proposals

» Non-local learning rules perform competitively, robust to noisy updates

» Route I: further improvement of local rules to close the gap with
respect to backpropagation

» Route Il: further refinement and characterization of scalable
biological implementations of weight estimation mechanisms for non-
local rules

» Github library: https://github.com/neuroailab/neural-alignment
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