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“Virtual Experimental” Approach
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Defining observable statistics

Activations
Layer-wise


Activity

Changes

Weights
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Is this Problem Even Tractable?



Visualizing observables on ImageNet
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Framing it as a classification problem

How well can we do by framing it as a classification problem?


Sample is constructed from one layer of a trained network

Early, middle, or 
deep layer Weight trajectories

Activation 
trajectories

Layer-wise

Activity Change 

trajectories



General separability problem is tractable
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Learning rules are not linearly separable from the activations
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Random Forest makes few mistakes



Differences in learning rate policy harder to distinguish

Differences in learning rate policy 

(gradient magnitude)

Differences in gradient direction



Not all aggregate statistics are useful
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Adding Experimental Realism

Removing certain “animals” or “training curricula”: holdouts of entire 
input classes


 
Access to only portions of the learning trajectory: subsampling 
observable trajectories


Incomplete and noisy measurements: subsampling units and Gaussian noise 
before collecting observables
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Quantifying learning differences between tasks
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Adding Experimental Realism

Removing certain “animals” or “training curricula”: holdouts of entire 
input classes


 
Access to only portions of the learning trajectory: subsampling 
observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise 
before collecting observables



Sparse subsampling across learning trajectory robust to trajectory undersampling
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Sampling across learning trajectory is important for robustness to undersampling
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What insights could this approach potentially provide?

Different experimental tools have different limitations


Optical imaging techniques usually give us simultaneous access to 
thousands of units but can have lower temporal resolution and 
signal-to-noise


Electrophysiological recordings can have higher signal-to-noise and 
better temporal resolution, but can lack the coverage to thousands 
of units



Modeling unit subsampling and measurement noise 

“Ideal” noiseless, perfect information setting



Weights are not robust to measurement noise and unit undersampling

Within typical imaging range of several hundred to several thousand synapses



Activations are the most robust to measurement noise and unit undersampling

Within typical electrophysiological range of several hundred units



Conclusions
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Code & Dataset: https://github.com/neuroailab/lr-identify


