Identifying Learning Rules From Neural Network Observables

Aran Nayebi, Sanjana Srivastava, Surya Ganguli, Daniel L.K.Yamins

NeurIPS 2020 Spotlight

Problem Set-Up

What would you need to measure to reliably distinguish *classes* of learning rules?

"Virtual Experimental" Approach

SGD+Momentum (SGDM)

Adam

Information Alignment (IA) Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

> CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512) Model seed (None, 0)

SGD+Momentum (SGDM)

Adam

Information Alignment (IA) Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

> CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512) Model seed (None, 0)

SGD+Momentum (SGDM)

Adam Information Alignment (IA) Feedback Alignment

(FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512) Model seed (None, 0)

SGD+Momentum (SGDM)

Adam

Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

> CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512) Model seed (None, 0)

SGD+Momentum (SGDM)

Adam Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

> CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512) Model seed (None, 0) Dataset seed (None, 0)

SGD+Momentum (SGDM)

Adam Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

> CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512) Model seed (None, 0)

SGD+Momentum (SGDM)

Adam Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

> CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512) Model seed (None, 0) Dataset seed (None, 0)

SGD+Momentum (SGDM)

Adam Information Alignment (IA)

Feedback Alignment (FA)

Tasks

ImageNet (supervised)

SimCLR (self-supervised)

Word-Speaker-Noise (supervised)

> CIFAR-10 (supervised)

Architectures

ResNet-34v2

ResNet-34

ResNet-18v2

ResNet-18

AlexNet

AlexNet-LRN

KNet4

KNet4-LRN

KNet5

KNet5-LRN

Hyperparameters

Batch size (128, 256, 512) Model seed (None, 0) Dataset seed (None, 0)

"Virtual Experimental" Approach

Defining observable statistics

WeightsActivationsLayer-wise
Activity
ChangesProxy for synaptic
strengthsProxy for post-synaptic
activitiesProxy for relative change between
pre- and post-synaptic activations

Defining observable statistics

Defining observable statistics

"Virtual Experimental" Approach

"Virtual Experimental" Approach

Is this Problem Even Tractable?

Trajectories across network training appear highly distinctive

How well can we do by framing it as a classification problem?

Sample is constructed from one layer of a trained network

General separability problem is tractable

Learning rules are not linearly separable from the activations

Random Forest makes few mistakes

Differences in learning rate policy harder to distinguish

Not all aggregate statistics are useful

Removing certain "animals" or "training curricula": holdouts of entire input classes

Access to only portions of the learning trajectory: subsampling observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise before collecting observables

Removing certain "animals" or "training curricula": holdouts of entire input classes

Access to only portions of the learning trajectory: subsampling observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise before collecting observables

Quantifying learning differences between tasks

Removing certain "animals" or "training curricula": holdouts of entire input classes

Access to only portions of the learning trajectory: subsampling observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise before collecting observables

Sparse subsampling across learning trajectory robust to trajectory undersampling

Removing certain "animals" or "training curricula": holdouts of entire input classes

Access to only portions of the learning trajectory: subsampling observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise before collecting observables

Different experimental tools have different limitations

- Optical imaging techniques usually give us simultaneous access to thousands of units but can have lower temporal resolution and signal-to-noise
- Electrophysiological recordings can have higher signal-to-noise and better temporal resolution, but can lack the coverage to thousands of units

Weights are not robust to measurement noise and unit undersampling

Within typical imaging range of several hundred to several thousand synapses

Activations are the most robust to measurement noise and unit undersampling

Within typical electrophysiological range of several hundred units

Conclusions

Simple (non-linear) classifier such as Random Forest generalizes across certain heldout classes of input types ("animal" and "training curricula" holdouts)

Simple (non-linear) classifier such as Random Forest generalizes across certain heldout classes of input types ("animal" and "training curricula" holdouts)

Measurements temporally spaced further apart are more robust to *trajectory undersampling*, for each observable measure

Simple (non-linear) classifier such as Random Forest generalizes across certain heldout classes of input types ("animal" and "training curricula" holdouts)

Measurements temporally spaced further apart are more robust to *trajectory undersampling*, for each observable measure

Aggregate statistics across units of the network's activation patterns are most robust to unit undersampling and measurement noise

Simple (non-linear) classifier such as Random Forest generalizes across certain heldout classes of input types ("animal" and "training curricula" holdouts)

Measurements temporally spaced further apart are more robust to *trajectory undersampling*, for each observable measure

Aggregate statistics across units of the network's activation patterns are most robust to *unit undersampling* and *measurement noise*

Hypothesis: *in vivo* electrophysiological recordings of <u>post-synaptic activities</u> from a neural circuit on the order of several hundred units, frequently measured at wider intervals during the course of learning, may provide a good basis on which to identify learning rules

Conclusions

We can identify learning rules *only* on the basis of aggregate statistics of observable measures: weights, activations, or layer-wise activity changes

Simple (non-linear) classifier such as Random Forest generalizes across certain heldout classes of input types ("animal" and "training curricula" holdouts)

Measurements temporally spaced further apart are more robust to *trajectory undersampling*, for each observable measure

Aggregate statistics across units of the network's activation patterns are most robust to *unit undersampling* and *measurement noise*

Hypothesis: *in vivo* electrophysiological recordings of <u>post-synaptic activities</u> from a neural circuit on the order of several hundred units, frequently measured at wider intervals during the course of learning, may provide a good basis on which to identify learning rules

Code & Dataset: <u>https://github.com/neuroailab/lr-identify</u>