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“Virtual Experimental” Approach

What would you need to measure
to reliably distinguish classes of learning rules!?
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Defining observable statistics
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Visualizing observables on ImageNet
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Trajectories across network training appear highly distinctive



Framing It as a classification problem

How well can we do by framing it as a classification problem?

Sample is constructed from one layer of a trained network
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Random Forest makes few mistakes

SVM
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Differences In learning rate policy harder to distinguish

Differences in learning rate policy
(gradient magnitude)
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Not all aggregate statistics are useful
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Adding Experimental Realism

Removing certain “animals” or “training curricula”: holdouts of entire
input classes

Access to only portions of the learning trajectory: subsampling
observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise
before collecting observables
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Generalization to held-out “animals
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Generalization to held-out “training curricula
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Quantifying learning differences between tasks
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Adding Experimental Realism

Remoyving certain “animals” or “training curricula”: holdouts of entire
input classes

Access to only portions of the learning trajectory: subsampling
observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise
before collecting observables



Sparse subsampling across learning trajectory robust to trajectory undersampling
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Sampling across learning trajectory Is important for robustness to undersampling

Original performance
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Adding Experimental Realism

Remoyving certain “animals” or “training curricula”: holdouts of entire
input classes

Access to only portions of the learning trajectory: subsampling
observable trajectories

Incomplete and noisy measurements: subsampling units and Gaussian noise
before collecting observables



What insights could this approach potentially provide?

Different experimental tools have different limitations

Optical imaging techniques usually give us simultaneous access to
thousands of units but can have lower temporal resolution and

signal-to-noise

Electrophysiological recordings can have higher signal-to-noise and
better temporal resolution, but can lack the coverage to thousands

of units



Modeling unit subsampling and measurement noise

“Ideal” noiseless, perfect information setting

Layer-wise
Activity Changes ;,q9,

g R\ S A70%77%86%88%89% 100% 100%
42 y AL A7 2%76%88%88%88% 75% 75% 00%
g J1A63%67%86%85%87% 50% 1\ L A84%88%
o p 1347 8%80%81%85%87% p 13 A77%80%82%83%86% 25% 80%
%_ VDA77 %77%82%80%84% 1N\ A7 8%79%82%81%87% 10%
E 1 A62%67%71%76%85% 1 KA79%80%80%82%85% 1% 70%
45%51%58%67%82% WV T} A8 1%81 %82 %82 %86 %Ik WV -1 1 LA6 3%71%79%82%89%

60%

:’3 p A 1B pL7/340%42%48%58% 79 %R M1 {-R1P47481%81%84 %85 %897 M1 1.1-B 1 PL/155%56%64%68%76%

CT-B1k34152%47%57%57%74% C{-B1k$4182%83%847%84%84% c{-81k$7448%43%48%45%44%

10 5 1 0.5 0 10 5 1 0.5 0 10 5 1 050 ~0%
Gaussian Noise o

Un



Weights are not robust to measurement noise and unit undersampling
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Activations are the most robust to measurement noise and unit undersampling
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Simple (non-linear) classifier such as Random Forest generalizes across certain held-
out classes of input types (“‘animal” and “training curricula” holdouts)
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undersampling, for each observable measure
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learning rules

Code & Dataset: https://github.com/neuroailab/Ir-identify




