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Hippocampal-Entorninal Spatial Map
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What functional role do these
cells serve in the circult, If
any?



Accounting for heterogeneous code In the presence of rewards?

rate maps
ENV1 ENV2

6.86 Hz 0.96 9.62 Hz

1.06

5.91 Hz 1.21 8.30 Hz 1.15

-

Butler*, Hardcastle*, Giocomo 2019 free foraging (ENV1) spatial task (ENV2)

In tact, MEC remaps in the presence of rewards... so what
describes the joint interaction between these
heterogeneous cells and reward?



Taking a modeling approach

It would be useful to have a unified model that can simultaneously
explain different types of neural responses in MEC.
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Taking a modeling approach

It would be useful to have a unified model that can simultaneously
explain different types of neural responses in MEC.

rate maps
ENV1 ENV2

6.86 Hz 0.96 9.62 Hz 1.06 Heterogeneous
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Where do we begin?



“Hand-Tuned"” Attractor Models - 2D Case
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But these hand tuned models
capture the properties of
stereotypical cell-type classes



But more recently there are neural network models that “develop’ these cells. ..
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But are they a good quantitative model of these responses”
MEC Grid Cell Model Grid Cell
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Not all
models
are equal! h'




Main Questions

How do we define similarity between sets of heterogeneous
responses we can’'t adequately describe in words”

MEC Heterogeneous Cell Model Heterogeneous Cell
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Goal-Driven Approach

“behavior” “circuit”
1. T 2. T
L = loss function D = dataset A = architecture class
MEC Heterogeneous Cell Model Heterogeneous Cell




Main Questions

Before we do the goal driven approach, how do we even
measure it a model is correct?

Qur approach is that a model should be like the system is unto
tselt.
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Spectrum of assumptions
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Spectrum of assumptions: One-to-One

Most Sparse
Source MEC

Least Sparse
Target MEC

%%One-to-One:

FInd the most
correlated
neuron in the
source animal
to the target

neuron
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Spectrum of assumptions: Sparse Linear
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Spectrum of assumptions: ‘Full” Linear

Regularization constants enforce sparsity

Most Sparse Least Sparse
Source MEC Target MEC
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One-to-one Is quite bad across animals



Sparse linear mappings are also guite bad across animals
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Sparse linear mappings are also guite bad across animals
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Full linear mappings work best across animals

Allowing for lower regularization per cell
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Most cells prefer ridge regression
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Most cells prefer ridge regression
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Heterogeneous cells are reliable targets of explanation

Consistent reliability across all cells
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Heterogeneous cells are reliable targets of explanation

So far, we have shown how to measure similarity of the
responses of the heterogeneous cells, and that these
responses are reliable

Now, we are going to describe what the constraints are that
give rise to these reliable responses

MEC Heterogeneous Cell Model Heterogeneous Cell




Goal-Driven Modeling - Primary Components

“behavior” “circuit”
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L = loss function D = dataset A = architecture class
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A spectrum of tasks

Simulated trajectory

Place cell centers
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A spectrum of tasks

Velocity

Simulated trajectory
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A spectrum of tasks

Simplest “model”

Velocity » MEC > Place Cells > Position (x,y)




A spectrum of tasks
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A spectrum of tasks
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A spectrum of tasks
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Qutput-based models



A spectrum of tasks
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Goal-Driven Modeling - Primary Components

i ', 7))

“behavior” circuit
1. T 2. T
L = loss function D = dataset A = architecture class
MEC Heterogeneous Cell Model Heterogeneous Cell




A spectrum of circuits
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A spectrum of circurts
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A spectrum of circurts — learnable modulation (“gating’)

SimpleRNN UGRNN
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A spectrum of circurts — learnable modulation (“gating’)
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A spectrum of circurts — learnable modulation (“gating’)

SimpleRNN UGRNN GRU LSTM
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A spectrum of circurts — output nonlinearity
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A spectrum of circurts — output nonlinearity
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Benchmarking models with the same transform as between animals
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Task-optimized navigational models best predict the entire MEC population
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Task-optimized navigational models best predict the entire MEC population

0.8 § o:o
2 < NMF
: E & F
0.6 et S O O 3 n Comp.
e = S = S 2100% = 5
= 3 g g S Comp- &
5 3 5 5 S B F
Q E w0 [¥e)
,_g E S (e
0O 04 & 5 S g g 2%
= s s 3 3 3 3 < Comp.
< || S
5 5 = :
(DI o I :” =]
) z & ) x x =  z 3
0.2 S 2 el | S T % z
: == | . ) =] S
0.0° | - N N N
Velocity RNN RNN RNN RNN SRNN SRNN SRNN GRU GRU LSTM LSTM UGRNN UGRNN Low Rank
Input Linear Tanh Sigmoid ReLU Linear Tanh ReLU Sigmoid ReLU Sigmoid ReLU Linear ReLU “f{rij Clell
o e”

Best task-optimized models “solve” the neurons
SimpleRNN| UGRNN GRU LSTM

( ) -~ N T3 =
| R IEAL

“MEC”
YY)

velocz'tz'est
Input

place cells,,
Output




Nonlinearity affects generalization
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Nonnegativity constraint + gating aids in generalization across
environments



Nonlinearity affects generalization
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But this nonnegativity constraint must not saturate either!



Model input Is a poor predictor of population
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Models add a lot of predictive power to their inputs



Neural Predictivity

Directly supervising on Cartesian coordinates fails to generalize
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Place cells alone are a poor predictor
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But place cells alone are not a good predictor of MEC (good!)



...as 1s NMF
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Dimensionality reduction on place cells Is not a good predictor
of MEC either



Comparing 2D trained models to |D data
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Comparing 2D trained models to |D data

VR Setup Side View Virtual linear track
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Attinger*, Campbell* et al. 2021
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Comparing 2D trained models to |D data

Best model in 2D generalizes to 1D!
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Neural Predictivity

But gap between top models and inter-animal consistency...
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Could this be fixed by making the model sensitive to cues during evaluation?

Neural Predictivity
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Could this be fixed by making the model sensitive to cues during evaluation?

Neural Predictivity
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Cue Input Is a strong predictor of the population responses

Neural Predictivity

Cues drive population response variability ...unli
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Training UGRNN RelLU with place cell loss + cue input closes gap

Neural Predictivity
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Task-optimized navigational models best predict the entire MEC population
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Task-optimized navigational models best predict the entire MEC population
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Best model class in terms of neural predictivity also matches
grid score distribution in its own synthetic population



Task-optimized navigational models best predict the entire MEC population
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Task-optimized navigational models best predict the entire MEC population
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Grid Score Match

More fine-grained unit matching metrics
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More fine-grained unit matching metrics
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Neural network model better predicts heterogeneous cells
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Neural Predictivity
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Knockout experiments

Given that we have a model that exhibits close similarity to
MEC, we can use it to generate predictions for experiments
that are very difficult to do



Knockout experiments
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Networks are robust to knockouts
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Heterogeneous cells are relevant to navigation
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Differences In gating architecture
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Accounting for rewards

Why do we want the same model to account for rewards?



Accounting for rewards

Why do we want the same model to account for rewards”?

Because we think that non-spatial rewards are nonetheless
part of the same underlying framework.



Remapping In the presence of reward
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Remapping In the presence of reward

Remembered reward locations

restructure entorhinal spatial maps

William N. Butler*, Kiah Hardcastle*, Lisa M. GiocomoT

free foraging (ENV1)

spatial task (ENV2)

rate maps
ENV1 ENV2

6.86 Hz 0.96 9.62 Hz 1.06

5.91 Hz 1.21 8.30 Hz 1.15

3.55 Hz 0.79 10.64 Hz 1.13




Modeling rewards
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Modeling rewards - VWhat we have done previously




Exploration only model captures each condition separately
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Exploration only model falls to capture remapping
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Failure of pure exploration!
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Reward must be extrinsically modeled

Simply augmenting inputs does not help either



Inspiration from animal behavior — rapid, direct paths

Animals tend to take rapid, direct paths to reward zone

circuity = 0.42
time=74s
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Reward must be extrinsically modeled
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Modeling rewards as biased path integration
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Modeling rewards as biased path integration
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Modeling rewards as biased path integration

Reward remapping strongly input driven!



Pure explortation isn't any better
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Reward-biased path integration captures remapping of responses In the presence of reward
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Reward-biased path integration captures remapping of responses in the presence of reward
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Main Conclusions

1.

3.

5.

Heterogeneous cells are reliable: Animals can explain each other quite well, but
under a suitably chosen transform class (ridge regression)

Modeling conclusions (under transform class):
Classic theoretical model does not quantifiably explain all of the data: NMF,
(dimensionality reduction on simulated place cells) is very far from the inter-animal
consistency.

lask Differentiation: Navigational task training loss gives you higher correlation
than NMF loss, especially for the non-grid like units. Intermediate Place Cell
representation is important.

Circuit Differentiation: UGRNN RelLU gives the best match overall, and
approaches the inter-animal consistency even when trained in a different
environment.

Non-spatial rewards can be accounted for in the same path integration framework
(and are very input-driven).

Overall Conclusion: A process of biological performance optimization directly
shaped the neural mechanisms in MEC as a whole (normative explanation for grid &
non-grid cells alike).
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Heterogeneous cells are reliable: Animals can explain each other quite well, but
under a suitably chosen transform class (ridge regression)

Modeling conclusions (under transform class):
Classic theoretical model does not quantifiably explain all of the data: NMF,
(dimensionality reduction on simulated place cells) is very far from the inter-animal
consistency.

lask Difterentiation: Navigational task training loss gives you higher correlation
than NMF loss, especially for the non-grid like units. Intermediate Place Cell
representation is important.

Circuit Differentiation: UGRNN RelLU gives the best match overall, and
approaches the inter-animal consistency even when trained in a different
environment.

Non-spatial rewards can be accounted for in the same path integration framework
(and are very input-driven).

NeurlPS 2021 Paper: https://www.biorxiv.org/content/10.1101/2021.10.30.466617
Pretrained Models & Neural Fitting Pipeline: hitps://github.com/neurcailab/mec
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