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How might we characterize
the response patterns of these
heterogeneous cells?

Border Cells

What functional role do these
cells serve in the circult, If
any?



Accounting for heterogeneous code In the presence of rewards?

rate maps
ENV1 ENV2

6.86 Hz 0.96 9.62 Hz

1.06

5.91 Hz 1.21 8.30 Hz 1.15

-

Butler*, Hardcastle*, Giocomo 2019 free foraging (ENV1) spatial task (ENV2)

In tact, MEC remaps in the presence of rewards... so what
describes the joint interaction between these
heterogeneous cells and reward?



Taking a modeling approach

It would be useful to have a unified model that can simultaneously
explain different types of neural responses in MEC.
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Taking a modeling approach

It would be useful to have a unified model that can simultaneously
explain different types of neural responses in MEC.
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Where do we begin?



Task-driven neural network models can “develop™ these cells. ..
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Main Questions

How do we define similarity between sets of heterogeneous
responses we can’'t adequately describe in words”
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Goal-Driven Approach

“behavior” “circuit”
1. T 2. T
L = loss function D = dataset A = architecture class
MEC Heterogeneous Cell Model Heterogeneous Cell




Main Questions

Before we do the goal driven approach, how do we even
measure it a model is correct?

Qur approach is that a model should be like the system is unto
tselt.



Heterogeneous cells are reliable targets of explanation

Consistent reliability across all cells
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Heterogeneous cells are reliable targets of explanation

So far, we have shown how to measure similarity of the
responses of the heterogeneous cells, and that these
responses are reliable

Now, we are going to describe what the constraints are that
give rise to these reliable responses

MEC Heterogeneous Cell Model Heterogeneous Cell




Benchmarking models with the same transform as between animals
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Task-optimized navigational models best predict the entire MEC population
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Task-optimized navigational models best predict the entire MEC population
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Nonlinearity affects generalization
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Nonnegativity constraint + gating aids in generalization across
environments



Nonlinearity affects generalization
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Nonnegativity constraint + gating aids in generalization across
environments

But this nonnegativity constraint must not saturate either!



Model input Is a poor predictor of population
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Models add a lot of predictive power to their inputs



Neural Predictivity

Directly supervising on Cartesian coordinates fails to generalize
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Qutput place cell supervision provides better generalization
over direct supervision of position

velocities, place cells, velocities,
Input Output Input

positions (x),,
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Place cells alone are a poor predictor
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But place cells alone are not a good predictor of MEC (good!)



...as 1s NMF
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Dimensionality reduction on place cells Is not a good predictor
of MEC either



Knockout experiments

Given that we have a model that exhibits close similarity to
MEC, we can use it to generate predictions for experiments
that are very difficult to do



Knockout experiments
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Networks are robust to knockouts
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Heterogeneous cells are relevant to navigation
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Accounting for rewards

Why do we want the same model to account for rewards?



Accounting for rewards

Why do we want the same model to account for rewards”?

Because we think that non-spatial rewards are nonetheless
part of the same underlying framework.



Remapping In the presence of reward

Remembered reward locations
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Remapping In the presence of reward

Remembered reward locations

restructure entorhinal spatial maps

William N. Butler*, Kiah Hardcastle*, Lisa M. GiocomoT

free foraging (ENV1)

spatial task (ENV2)

rate maps
ENV1 ENV2

6.86 Hz 0.96 9.62 Hz 1.06

5.91 Hz 1.21 8.30 Hz 1.15

3.55 Hz 0.79 10.64 Hz 1.13
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Modeling rewards - VWhat we have done previously




Exploration only model captures each condition separately
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Exploration only model falls to capture remapping
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Failure of pure exploration!
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Reward must be extrinsically modeled

Simply augmenting inputs does not help either



Inspiration from animal behavior — rapid, direct paths

Animals tend to take rapid, direct paths to reward zone

circuity = 0.42
time=74s
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Reward must be extrinsically modeled
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Modeling rewards as biased path integration




ADU93SISUO ) [BWITUB-JIIU]

-/ + pFemoy

* +PremIy

- ~PIEMIY
= = = N =
- - - - - -

(40270]2.4.407) U0S4PI]) KAITATIDTPIIJ TeFNIN]

Modeling rewards as biased path integration
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Modeling rewards as biased path integration

Reward remapping strongly input driven!



Pure explortation isn't any better
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Reward-biased path integration captures remapping of responses In the presence of reward
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Heterogeneous cells are reliable: Animals can explain each other quite well, but
under a suitably chosen transform class (ridge regression)

Modeling conclusions (under transform class):
Classic theoretical model does not quantifiably explain all of the data: NMF,
(dimensionality reduction on simulated place cells) is very far from the inter-animal
consistency.

lask Differentiation: Navigational task training loss gives you higher correlation
than NMF loss, especially for the non-grid like units. Intermediate Place Cell
representation is important.

Circuit Differentiation: UGRNN RelLU gives the best match overall, and
approaches the inter-animal consistency even when trained in a different
environment.

Non-spatial rewards can be accounted for in the same path integration framework
(and are very input-driven).

Overall Conclusion: A process of biological performance optimization directly
shaped the neural mechanisms in MEC as a whole (normative explanation for grid &
non-grid cells alike).




Main Conclusions

1.

3.
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Heterogeneous cells are reliable: Animals can explain each other quite well, but
under a suitably chosen transform class (ridge regression)

Modeling conclusions (under transform class):
Classic theoretical model does not quantifiably explain all of the data: NMF,
(dimensionality reduction on simulated place cells) is very far from the inter-animal
consistency.

lask Differentiation: Navigational task training loss gives you higher correlation
than NMF loss, especially for the non-grid like units. Intermediate Place Cell
representation is important.

Circuit Differentiation: UGRNN RelLU gives the best match overall, and
approaches the inter-animal consistency even when trained in a different
environment.

Non-spatial rewards can be accounted for in the same path integration framework
(and are very input-driven).

Pretrained Models & Neural Fitting Pipeline: https://github.com/neuroailab/mec
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