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The Mental Simulation Hypothesis

_The Nature of Explanation
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The Mental Simulation Hypothesis

The Nature of Explanation

My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us

in mechanical devices which aid thought and calculation. . .
If the organism carries a ‘small-scale model’ of external reality and of its own

possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way |
to react in a much fuller, safer, and more competent manner to the emergencies

which face it. PR L

Craik (1943): The brain builds mental models of the
external physical world, that support physical inferences
via mental simulations.
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models of the external physical world,
that support physical inferences via
mental simulations.




The Mental Simulation Hypothesis: Behavioral Evidence

The Nature of EXplanation TS N mmemmmmmmsmmmmey
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My hypothesis then is that thought models, or parallels, reality — that its essential :
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The Mental Simulation Hypothesis: Human Neuroimaging Evidence

The Nature of Explanation
My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies

which face it.

Craik (1943): The brain builds mental
models of the external physical world,
that support physical inferences via
mental simulations.
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The Mental Simulation Hypothesis: Human Neuroimaging Evidence

The Nature of Explanation ;e e
My hypothesis then is that thought models, or parallels, reality — that its essential

feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism, Will it fall?
e rall «

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies
which face it.

Craik (1943): The brain builds mental
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The Mental Simulation Hypothesis: Human Neuroimaging Evidence

The Nature of Explanation
My hypothesis then is that thought models, or parallels, reality — that its essential
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The Mental Simulation Hypothesis: Primate Electrophysiological Evidence

The Nature of Explanation ST ey
My hypothesis then is that thought models, or parallels, reality — that its essential
feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism,
and that this symbolism is largely of the same kind as that which is familiar to us
in mechanical devices which aid thought and calculation. . .

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies

which face it.
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The Mental Simulation Hypothesis: Primate Electrophysiological Evidence
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The Mental Simulation Hypothesis: Primate Electrophysiological Evidence
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Neural Mechanisms of Mental Simulation

Crux question: What are the neural

mechanisms that enable the brain’s
“simulation-like” computations across
environments?

Fischer et al. 2016
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Defining Hypotheses

R1 (Input-Driven): Take in unstructured visual inputs
across a range of physical phenomena.
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can be compared to biological units (e.g. containing
“artificial neurons”).



Defining Hypotheses

“Sensory-Cognitive Networks”

R1 (Input-Driven): Take in unstructured visual inputs
across a range of physical phenomena.

R2 (Behavioral Outputs): Generate physical predictions for
each scenario (“behavior”).

R3 (Neural Representations): Consist of internal units that

can be compared to biological units (e.g. containing
“artificial neurons”).






Overall Approach: Training Datasets

(A) Model Pretraining
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Physion

Dominoes Support




Overall Approach: Training Datasets

Physion/ThreeD World (TDW) Bear et al. 2021




Overall Approach: Sensory-Cognitive Hypotheses

(A) Model Pretraining

Inputs Sensory-Cognitive Hypothesis Classes

Physion

Dominoes Support




Overall Approach: Pixel-wise Future Prediction
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Overall Approach: Pixel-wise Future Prediction

(A) Model Pretraining
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Physion
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_
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Sensory-Cognitive Hypothesis Classes

Self-supervised on future frame prediction — can be readily
applied to large-scale, real-world video datasets

Predicts the future at the resolution of the sensory
input (very detailed!)
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Overall Approach: Structured World Models

(A) Model Pretraining

Inputs Sensory-Cognitive Hypothesis Classes
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Overall Approach: Structured World Models

(A) Model Pretraining
Inputs Sensory-Cognitive Hypothesis Classes

Physion

Dominoes Support

End-to-End Future Prediction:

Predicts at the level of object representations and their relations

(a)* 4\ -» (b) 4-5-» (¢) S
‘.

<+ —»> -+ -»>

(@) @* €\ ¥ M *
<> >
T (%) E% M * :@3
=

Principles of Object Perception Elizabeth Spelke, 1990 Elizabeth Spelke




Overall Approach: Structured VWorld Models

(A) Model Pretraining

Dominoes

Inputs

Physion

Support

Sensory-Cognitive Hypothesis Classes

End-to-End Future Prediction:

Predicts at the level of object representations and their relations
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Overall Approach: Foundation Models

(A) Model Pretraining
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Overall Approach: Foundation Models

(A) Model Pretraining

Inputs
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Learn a partial, implicit representation of the physical world by
performing a challenging vision task (“foundation model”)




Overall Approach: Foundation Models

(A) Model Pretraining

Inputs Sensory-Cognitive Hypothesis Classes Ground Truth
Physion . Latent Future Prediction: 2. Dynamics Training Stage
Dominoes Support 1.Pretraining Stage Visual Encoder

(“Sensory”) 4’ _ D

T+1
Prediction

Zag—

p

{7? it Ty ) & ,.,"; -
iy =

End-to-End Future Prediction:

Learn a partial, implicit representation of the physical world by
performing a challenging vision task (“foundation model”)

Emphasis on reusability!



Overall Approach: Foundation Models

Majumdar et al. 2023
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Overall Approach: Foundation Models

Majumdar et al. 2023
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Ego4D: A massive-scale egocentric dataset

3,670 hours of in-the-wild daily life activity
931 participants from 74 worldwide locations

Multimodal: audio, 3D scans, IMU, stereo, multi-camera
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Overall Approach: Foundation Models

(A) Model Pretraining

Inputs

Physion

Dominoes

Support

Ground Truth

Sensory-Cognitive Hypothesis Classes

Latent Future Prediction:

2. Dynamics Training Stage

1.Pretraining Stage
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Prediction
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End-to-End Future Prediction:

Learn a partial, implicit representation of the physical world by
performing a challenging vision task (“foundation model”)

Emphasis on reusability!



Overall Approach: Foundation Models + Dynamics

(A) Model Pretraining

Inputs

Latent Future Prediction:

Physion

Dominoes Support

e o4D etc .

1.Pretraining Stage

End-to-End Future Prediction:

Ground Truth

Sensory-Cognitive Hypothesis Classes

2. Dynamics Training Stage

(“Cognitive”) Prediction

Learn a partial, implicit representation of the physical world by
performing a challenging vision task (“foundation model”)

Emphasis on reusability!

Leverage these dynamics to do explicit physical simulation



Overall Approach

(A) Model Pretraining

Inputs

Physion
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Sensory-Cognitive Hypothesis Classes Ground Truth

Latent Future Prediction:
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Overall Approach: Model Evaluations

(A) Model Pretraining

Inputs
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Overall Approach: Model Evaluations (Human Behavior)

(A) Model Pretraining
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Overall Approach: Model Evaluations (Macaque Physiology)

(A) Model Pretraining

Inputs

Physion

Dominoes

Sensory-Cognitive Hypothesis Classes

Latent Future Prediction:

1.Pretraining Stage
__Ego4dD, etc

| R

Ground Truth

2. Dynamics Training Stage

0 m:')

T+1
Prediction
End-to-End Future Prediction:
P ixel'Wise Object.slot
l Time )
[ | ? ? ?
[ | [ | [ | [ |
o ¢ ° " ° " * "
Observed + Simulated
(B) Model Evaluations v
1. Human Behavior: Physion Object Contact Prediction (OCP) 2. Macaque Neurophysiology: Mental-Pong > purc

cue

Observed Stimuli
Time)

stimulus last frame

Example Scenarios

.| acc. =0.96

Unobserved Outcome

true label

NO
acc.=0.89

YES

[

Occluded epoch

+27
Observed epoch (695270 ms)

ball paddle  occluder
(1240+350 ms)




Model Evaluations: Macague Neurophysiology

(A) Model Pretraining
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Latent Future Prediction:
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Neural response predictivity strongly separates models

Ma et al. 2023
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Neural response predictivity strongly separates models
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Prior Results in Inferior Temporal (IT) Cortex
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Predicting neurons Is relevant to simulating the ball
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Model Evaluations: Object Contact Prediction (OCP)
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Model Evaluations: Object Contact Prediction (OCP)

Bear et al. 2021

“Will the agent object contact the patient object?”

AGENT [PATIENT

. ALY

Daniel Bear Joshua Tenenbaum Daniel Yamins Judith Fan



Completion Progress [N

Bear et al. 2021
-.-} T S R —— /

iT I
]

YES NO

Is the red object going to hit the yellow area?
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Jakeaways so far...

1. Mental simulation appears to be primarily relevant to predicting
the future state of the environment in a suitable latent space.

2. In particular, this latent space is highly constrained -- it doesn't
appear to consist of bespoke object slots or prioritize fine-
grained detalls (e.g. at the level of pixels), but rather mainly

has to be reusable across dynamic scenes.

3. So far a correspondence between the ability to predict neural
& behavioral responses, and developing useful representations
for Embodied Al more generally (rather than classic computer

vision tasks e.g. classification, segmentation, etc).
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1. Sensory: Better leverage temporal relationships to learn a more
“factorized” and reusable representation: object-based, video
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Future Directions

1. Sensory: Better leverage temporal relationships to learn a more
‘factorized” and reusable representation: object-based, video
foundation model”

2. Cognitive: Hierarchy/modularization of timescales in dynamics”

Hierarchical reasoning by neural circuits in the frontal =~ " '
cortex ‘Probably /\

MORTEZA SARAFYAZD (5 AND MEHRDAD JAZAYERI Authors Info & Affiliations

\/\.

Reward Error Reward Error

Unreliable l {|§ ‘ J \ ‘

stimuli

Rule 1 - - -
/<' /< ’2 Switch &——% > Trial
RuleZ N " N ‘, N ‘, ‘ \

SCIENCE - 17 May 2019 Vol 364, Issue 6441 DOI: 10.1126/science.aav8911




Future Directions

1. Sensory: Better leverage temporal relationships to learn a more
“factorized” and reusable representation: object-based, video
foundation model”

2. Cognitive: Hierarchy/modularization of timescales in dynamics?

3. Data: More complex 2D and 3D scenes/real world objects
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